netcdf twpvisstpx04m2rv4minnisX20.c1.20141031.003200 { dimensions: time = UNLIMITED ; // (11664 currently) index = 18 ; variables: int base_time ; base_time:string = "2014-10-31, 00:00:00 GMT" ; base_time:long_name = "base time in epoch" ; base_time:units = "seconds since 1970-1-1 0:00:00 GMT" ; double time_offset(time) ; time_offset:long_name = "Time offset from base_time" ; time_offset:units = "seconds since 2014-10-31 00:00:00 GMT" ; double time(time) ; time:long_name = "Time offset from midnight" ; time:units = "seconds since 2014-10-31 00:00:00 GMT" ; float image_times(index) ; image_times:long_name = "Image times offset from base time" ; image_times:units = "seconds since 2014-10-31 00:00:00 GMT" ; float image_start(index) ; image_start:long_name = "Image start index" ; image_start:usage = "Images are merged together. Individual images can be extracted using the image index fields as in the following IDL example for given image n:\n", "rv = reflectance_vis(image_start(n-1):image_start(n-1)+image_numpix(n-1)-1)" ; float image_numpix(index) ; image_numpix:long_name = "Number of pixels for each image" ; float latitude(time) ; latitude:valid_min = -90.f ; latitude:valid_max = 90.f ; latitude:long_name = "north latitude" ; latitude:units = "deg" ; float longitude(time) ; longitude:valid_min = -180.f ; longitude:valid_max = 180.f ; longitude:long_name = "east longitude" ; longitude:units = "deg" ; float reflectance_vis(time) ; reflectance_vis:valid_min = 0.f ; reflectance_vis:valid_max = 1.6f ; reflectance_vis:long_name = "Visible reflectance (0.65 um)" ; reflectance_vis:units = "unitless" ; float reflectance_nir(time) ; reflectance_nir:valid_min = 0.f ; reflectance_nir:valid_max = 1.6f ; reflectance_nir:long_name = "Near Infrared reflectance (1.6 um)" ; reflectance_nir:units = "unitless" ; float temperature_sir(time) ; temperature_sir:valid_min = 160.f ; temperature_sir:valid_max = 340.f ; temperature_sir:long_name = "Solar Infrared temperature (3.9 um)" ; temperature_sir:units = "K" ; float temperature_ir(time) ; temperature_ir:valid_min = 160.f ; temperature_ir:valid_max = 340.f ; temperature_ir:long_name = "Infrared Channel temperature (10.8 um)" ; temperature_ir:units = "K" ; float temperature_sw(time) ; temperature_sw:valid_min = 160.f ; temperature_sw:valid_max = 340.f ; temperature_sw:long_name = "Split-Window Channel temperature (11.9 um)" ; temperature_sw:units = "K" ; float broadband_shortwave_albedo(time) ; broadband_shortwave_albedo:valid_min = 0.f ; broadband_shortwave_albedo:valid_max = 150.f ; broadband_shortwave_albedo:long_name = "broadband SW albedo" ; broadband_shortwave_albedo:units = "%" ; float broadband_longwave_flux(time) ; broadband_longwave_flux:valid_min = 0.f ; broadband_longwave_flux:valid_max = 400.f ; broadband_longwave_flux:long_name = "broadband LW flux" ; broadband_longwave_flux:units = "W/m^2" ; float ir_cloud_emittance(time) ; ir_cloud_emittance:valid_min = 0.f ; ir_cloud_emittance:valid_max = 1.5f ; ir_cloud_emittance:long_name = "IR cloud emittance" ; ir_cloud_emittance:units = "unitless" ; int cloud_phase(time) ; cloud_phase:valid_min = 0 ; cloud_phase:valid_max = 7 ; cloud_phase:long_name = "cloud phase" ; cloud_phase:units = "unitless" ; cloud_phase:value_0 = "clear over snow/ice" ; cloud_phase:value_1 = "water" ; cloud_phase:value_2 = "ice" ; cloud_phase:value_3 = "no retrieval" ; cloud_phase:value_4 = "clear" ; cloud_phase:value_5 = "bad retrieval" ; cloud_phase:value_6 = "suspected water" ; cloud_phase:value_7 = "suspected ice" ; float visible_optical_depth(time) ; visible_optical_depth:valid_min = 0.f ; visible_optical_depth:valid_max = 150.f ; visible_optical_depth:long_name = "cloud optical depth" ; visible_optical_depth:units = "unitless" ; float particle_size(time) ; particle_size:valid_min = 0.f ; particle_size:valid_max = 150.f ; particle_size:long_name = "effective particle radius or diameter" ; particle_size:units = "microns" ; particle_size:value_1 = "If phase=1 (water), this parameter is radius." ; particle_size:value_2 = "If phase=2 (ice), this parameter is diameter." ; float liquid_water_path(time) ; liquid_water_path:valid_min = 0.f ; liquid_water_path:valid_max = 6000.f ; liquid_water_path:long_name = "Liquid or Ice Water Path" ; liquid_water_path:units = "g/m^2" ; liquid_water_path:value_1 = "NOTE: If phase is 1 (water), this is Liquid Water Path." ; liquid_water_path:value_2 = "NOTE: If phase is 2 (ice), this is Ice Water Path." ; float cloud_effective_temperature(time) ; cloud_effective_temperature:valid_min = 160.f ; cloud_effective_temperature:valid_max = 340.f ; cloud_effective_temperature:long_name = "Effective cloud temperature" ; cloud_effective_temperature:units = "K" ; float cloud_top_pressure(time) ; cloud_top_pressure:valid_min = 0.f ; cloud_top_pressure:valid_max = 1100.f ; cloud_top_pressure:long_name = "cloud top pressure" ; cloud_top_pressure:units = "hPa" ; float cloud_effective_pressure(time) ; cloud_effective_pressure:valid_min = 0.f ; cloud_effective_pressure:valid_max = 1100.f ; cloud_effective_pressure:long_name = "Effective cloud pressure" ; cloud_effective_pressure:units = "hPa" ; float cloud_bottom_pressure(time) ; cloud_bottom_pressure:valid_min = 0.f ; cloud_bottom_pressure:valid_max = 1100.f ; cloud_bottom_pressure:long_name = "cloud bottom pressure" ; cloud_bottom_pressure:units = "hPa" ; float cloud_top_height(time) ; cloud_top_height:valid_min = -0.1f ; cloud_top_height:valid_max = 20.f ; cloud_top_height:long_name = "cloud top height" ; cloud_top_height:units = "km" ; float cloud_effective_height(time) ; cloud_effective_height:valid_min = -0.1f ; cloud_effective_height:valid_max = 20.f ; cloud_effective_height:long_name = "cloud effective height" ; cloud_effective_height:units = "km" ; float cloud_bottom_height(time) ; cloud_bottom_height:valid_min = -0.1f ; cloud_bottom_height:valid_max = 20.f ; cloud_bottom_height:long_name = "cloud bottom height" ; cloud_bottom_height:units = "km" ; // global attributes: :NetCDF_Version = "netCDF 4.0.1" ; :Title = "Pixel-level cloud products " ; :source = "NASA Langley Research Center" ; :version = "V4.1" ; :date = "VISST processed on May6 11:59" ; :facility_id = "X20" ; :site_id = "twp" ; :location = "nau" ; :data_level = "c1" ; :missing_value = "-9999." ; :zeb_platform = "twpvisstpx04m2rv4minnisX20.c1" ; :history = "created by user mk on machine ssai at Thu May 7 13:18:32 2015 UTC, using IDL 8.1" ; :input_files = "MTSAT-2" ; :reflectance_vis_note1 = "effective_wavelength_visst = 0.73 um" ; :reflectance_vis_note2 = "spectral_width_instrument = 0.55 um - 0.80 um" ; :temperature_sir_note1 = "effective_wavelength_visst = 3.75 um" ; :temperature_sir_note2 = "spectral_width_instrument = 3.5 um - 4.0 um" ; :temperature_ir_note1 = "effective_wavelength_visst = 10.8 um" ; :temperature_ir_note2 = "spectral_width_instrument = 10.3 um - 11.3 um" ; :temperature_sw_note1 = "effective_wavelength_visst = 12.0 um" ; :temperature_sw_note2 = "spectral_width_instrument = 11.5 - 12.5 um" ; :longwave_NB_BB_correlation = "The LW NB-BB correlation is given by Mbb=a+b*Mnb+c*Mnb*Mnb+dMnb*ln(colRH), where Mbb is the BB OLR(Wm-2), Mnb is the NB flux(Wm-2um-1), and colRH is the column weighted relative humidity(%) above the radiating surface. The coefficients are, for ocean night: a=83.8117,b=5.95104,c=-0.00855125,d=-0.482135,and day a=82.5429,b=6.12068,c=-0.0109212,d=-0.492657; land night a=65.1892,b=7.92889,c=-0.0260905,d=-0.650289; day a=66.7875,b=7.60876,c=-0.0288087,d=-0.560091. The fit was derived from May-Oct11 MTSAT-2/CERES-Terra Ed3A fluxes over the Darwin domain. For land, the day RMS is 6.31 Wm-2 (2.15%), night is 7.25 Wm-2 (2.75%); for ocean, day 6.57 Wm-2 (2.42%), and night 6.80 Wm-2 (2.54%). The CERES limb-darkening function is used to convert NB radiance to flux. These fluxes are preliminary. REFERENCE: Doelling,D.R, M.M.Khaiyer,and P.Minnis: Improved ARM-SGP TOA OLR Fluxes from GOES-8 IR Radiances based on CERES data, Proc. 13th Annual ARM Science Team Meeting,Boulder,CO,Mar31-Apr4,2003.http://www.arm.gov/publications/proceedings/conf13/" ; :shortwave_NB_BB_correlation = "The shortwave narrowband to broadband correlation is given by Abb = a + b*Anb + c*Anb*Anb + d*ln(1/cos (SZA)), where Abb is the broadband albedo (fraction), Anb is the narrowband albedo (fraction) and SZA is the solar zenith angle (deg). The coefficients are land a=0.0548017,b=0.543572,c=0.275204,d=0.0283393, and ocean a=0.0292854,b=0.722821,c=0.0156803,d=0.0326954. The relationship was derived from MTSAT-2/CERES-Terra Ed3A fluxes May-Oct11 over the Darwin domain and has a 0.0163 (10.79%) ocean albedo rms, and a 0.0115 (6.35%) land albedo rms. These fluxes are preliminary. REFERENCE: V. Chakrapani, D.R. Doelling, M.M. Khaiyer, and P. Minnis: 2003, New Visible to Broadband Shortwave Conversions for Deriving Albedos from GOES-8 Over the ARM SGP, Proc. of 13th Annual ARM Science Team Meeting, Boulder, CO, March 31 to April 4, 2003. http://www.arm.gov/publications/proceedings/conf13/" ; :visible_calibration = "The MTSAT-2 visible calibration equation is Rad(0.65um) = (g0 + g1*d + g2*d*d)*(C-C0), where g0=0.49, g1=3.88e-5, g2=0.0, C= visible channel count, C0=is the visible channel offset , d is the number of days since reference. REFERENCE: Nguyen, L, D.R. Doelling, P. Minnis, J. K. Ayers, 2004, Rapid Technique to cross calibrate satellite imager with visible channels, Proc. of 49th SPIE Meeting, Denver, CO, Aug. 2-6, 2004. http://www-pm.larc.nasa.gov/arm_refs.html#CPR" ; :IR_calibration = "The MTSAT-2 IR calibration was based on the nominal equations used in Mcidas." ; :VISST = "NASA-Langley cloud and radiation products are produced using the VISST (Visible Infrared Solar-infrared Split-Window Technique), SIST (Solar-infrared Infrared Split-Window Technique) and SINT (Solar-infrared Infrared Near-Infrared Technique). The techniques use MTSAT channels to detect clouds and retrieve cloud microphysics. Atmospheric profiles are obtained from MERRA. REFERENCES: Minnis, P., S. Sun-Mack, D. F. Young, P. W. Heck, D. P. Garber, Y. Chen, D. A. Spangenberg, R. F. Arduini, Q. Z. Trepte, W. L. Smith, Jr., J. K. Ayers, S. C. Gibson, W. F. Miller, V. Chakrapani, Y. Takano, K.-N. Liou, Y. Xie, and P. Yang, 2011: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data, Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 11, 4374-4400.; Minnis, P., L. Nguyen, R. Palikonda, P. W. Heck, D. A. Spangenberg, D. R. Doelling, J. K. Ayers, W. L. Smith, Jr., M. M. Khaiyer, Q. Z. Trepte, L. A. Avey, F.-L. Chang, C. R. Yost, T. L. Chee, and S. Sun-Mack, 2008: Near-real time cloud retrievals from operational and research meteorological satellites. Proc. SPIE Europe Remote Sens. 2008, Cardiff, Wales, UK, 15-18 September, 7107-2, 8 pp. http://www-pm.larc.nasa.gov (Publications link)" ; :DATA_VERSION_NOTE = "This version was processed historically and is an intermediate version. The data will be reprocessed in the future and replaced. NOTE: A correction to the input MTSAT-2 files (line=1,element=1) was applied to address a navigation offset between visible and infrared channels." ; :NCO = "4.0.5" ; }