netcdf epcaoshumidigraphM1.a1.20240207.000000 { dimensions: time = UNLIMITED ; // (382 currently) variables: int base_time ; base_time:string = "2024-02-07 00:00:00 0:00" ; base_time:long_name = "Base time in Epoch" ; base_time:units = "seconds since 1970-1-1 0:00:00 0:00" ; base_time:ancillary_variables = "time_offset" ; double time_offset(time) ; time_offset:long_name = "Time offset from base_time" ; time_offset:units = "seconds since 2024-02-07 00:00:00 0:00" ; time_offset:ancillary_variables = "base_time" ; double time(time) ; time:long_name = "Time offset from midnight" ; time:units = "seconds since 2024-02-07 00:00:00 0:00" ; time:standard_name = "time" ; int step_in_cycle(time) ; step_in_cycle:long_name = "Step in humidification cycle" ; step_in_cycle:units = "1" ; step_in_cycle:flag_values = 1, 2, 3, 4 ; step_in_cycle:flag_meanings = "Deliquescence_branch-stabilize_with_low_preconditioning_RH_and_low_sample_RH_conditions Deliquescence_branch-Keep_low_preconditioning_RH_but_ramp_sample_to_high_RH Efflorescence_branch-stabilize_with_high_preconditioning_RH_and_high_sample_RH Efflorescence_branch-Keep_preconditioning_RH_high_and_ramp_sample_to_low_RH" ; step_in_cycle:comment = "The humidigraph cycle consists of four steps:\n", "1. Deliquescence branch - stabilize with low preconditioning RH and low sample RH conditions.\n", "2. Deliquescence branch - Keep low preconditioning RH but ramp sample to high RH.\n", "3. Efflorescence branch - stabilize with high preconditioning RH and high sample RH.\n", "4. Efflorescence branch - Keep preconditioning RH high and ramp sample to low RH.\n", "This field reports a numeric value representing which of these four steps the humidigraph is executing." ; step_in_cycle:missing_value = -9999 ; float RH_after_saturator(time) ; RH_after_saturator:long_name = "Relative humidity of the air flow from the saturator" ; RH_after_saturator:units = "%" ; RH_after_saturator:missing_value = -9999.f ; RH_after_saturator:valid_min = 85.f ; RH_after_saturator:valid_max = 100.f ; RH_after_saturator:comment = "The saturator is the source of humidity for the entire humidigraph. This field reports the relative humidity of air flowing out of the saturator. It should always be high." ; float RH_after_dry_air_supply(time) ; RH_after_dry_air_supply:long_name = "Relative humidity of the air flow from the dry air supply" ; RH_after_dry_air_supply:units = "%" ; RH_after_dry_air_supply:missing_value = -9999.f ; RH_after_dry_air_supply:valid_min = 0.f ; RH_after_dry_air_supply:valid_max = 35.f ; RH_after_dry_air_supply:comment = "The dry air supply provides extremely dry air (RH < -15%) for the entire humidigraph. This field reports the relative humidity of the air stream from the dry air supply." ; float RH_after_nafion_col1(time) ; RH_after_nafion_col1:long_name = "Relative humidity of preconditioned sample" ; RH_after_nafion_col1:units = "%" ; RH_after_nafion_col1:missing_value = -9999.f ; RH_after_nafion_col1:valid_min = 0.f ; RH_after_nafion_col1:valid_max = 40.f ; RH_after_nafion_col1:comment = "The sample airflow may be preconditioned to either low or high RH before passing through the ramp RH phase. This field reports the humidity after this preconditioning stage. Dry preconditioning is used to measure the deliquescent humidification branch. Moist preconditioning is used to measure the efflorescent de-humidification branch." ; float RH_after_nafion_col2(time) ; RH_after_nafion_col2:long_name = "Relative humidity of sample air after the ramped or variable RH nafion column" ; RH_after_nafion_col2:units = "%" ; RH_after_nafion_col2:missing_value = -9999.f ; float T_after_saturator(time) ; T_after_saturator:long_name = "Temperature after the saturator (or moist air supply)" ; T_after_saturator:units = "degC" ; T_after_saturator:missing_value = -9999.f ; float T_after_dry_air_supply(time) ; T_after_dry_air_supply:long_name = "Temperature after dry air supply" ; T_after_dry_air_supply:units = "degC" ; T_after_dry_air_supply:missing_value = -9999.f ; float T_after_nafion_col1(time) ; T_after_nafion_col1:long_name = "Temperature of preconditioned sample" ; T_after_nafion_col1:units = "degC" ; T_after_nafion_col1:missing_value = -9999.f ; float T_after_nafion_col2(time) ; T_after_nafion_col2:long_name = "Temperature of sample air after the ramped or variable RH nafion column" ; T_after_nafion_col2:units = "degC" ; T_after_nafion_col2:missing_value = -9999.f ; float set_point_for_MFC_1(time) ; set_point_for_MFC_1:long_name = "Set point for Mass Flow Controller #1" ; set_point_for_MFC_1:units = "L/min" ; set_point_for_MFC_1:missing_value = -9999.f ; set_point_for_MFC_1:flow_type = "mass flow" ; set_point_for_MFC_1:reference = "volume of mass flow corresponding to 25 deg C, 1013.25 hPa" ; set_point_for_MFC_1:comment = "This MFC is used along with MFC_1 to control airflow to the first series of nafion columns to precondition the sample stream." ; float set_point_for_MFC_2(time) ; set_point_for_MFC_2:long_name = "Set point for Mass Flow Controller #2" ; set_point_for_MFC_2:units = "L/min" ; set_point_for_MFC_2:missing_value = -9999.f ; set_point_for_MFC_2:flow_type = "mass flow" ; set_point_for_MFC_2:reference = "volume of mass flow corresponding to 25 deg C, 1013.25 hPa" ; set_point_for_MFC_2:comment = "This MFC is used along with MFC_2 to control airflow to the first series of nafion columns to precondition the sample stream." ; float set_point_for_MFC_3(time) ; set_point_for_MFC_3:long_name = "Set point for Mass Flow Controller #3" ; set_point_for_MFC_3:units = "L/min" ; set_point_for_MFC_3:missing_value = -9999.f ; set_point_for_MFC_3:flow_type = "mass flow" ; set_point_for_MFC_3:reference = "volume of mass flow corresponding to 25 deg C, 1013.25 hPa" ; set_point_for_MFC_3:comment = "This MFC is used along with MFC_3 to control airflow to the second series of nafion columns which generate ramped RH." ; float set_point_for_MFC_4(time) ; set_point_for_MFC_4:long_name = "Set point for Mass Flow Controller #4" ; set_point_for_MFC_4:units = "L/min" ; set_point_for_MFC_4:missing_value = -9999.f ; set_point_for_MFC_4:flow_type = "mass flow" ; set_point_for_MFC_4:reference = "volume of mass flow corresponding to 25 deg C, 1013.25 hPa" ; set_point_for_MFC_4:comment = "This MFC is used along with MFC_4 to control airflow to the second series of nafion columns which generate ramped RH." ; float set_point_for_MFC_for_sample_flow(time) ; set_point_for_MFC_for_sample_flow:long_name = "Set point for Mass Flow Controller for sample flow" ; set_point_for_MFC_for_sample_flow:units = "L/min" ; set_point_for_MFC_for_sample_flow:missing_value = -9999.f ; set_point_for_MFC_for_sample_flow:flow_type = "mass flow" ; set_point_for_MFC_for_sample_flow:reference = "volume of mass flow corresponding to 25 deg C, 1013.25 hPa" ; float mass_flow_through_MFC_1(time) ; mass_flow_through_MFC_1:long_name = "Actual mass flow through MFC #1" ; mass_flow_through_MFC_1:units = "L/min" ; mass_flow_through_MFC_1:missing_value = -9999.f ; mass_flow_through_MFC_1:flow_type = "mass flow" ; mass_flow_through_MFC_1:reference = "volume of mass flow corresponding to 25 deg C, 1013.25 hPa" ; mass_flow_through_MFC_1:comment = "Mass flow related to Vol Flow by F_vol=F_mass*P_standard*T_local/(P_local*T_standard) with P_standard = 14.696 PSI and T_standard = 25 C = 298.25 K" ; float mass_flow_through_MFC_2(time) ; mass_flow_through_MFC_2:long_name = "Actual mass flow through MFC #2" ; mass_flow_through_MFC_2:units = "L/min" ; mass_flow_through_MFC_2:missing_value = -9999.f ; mass_flow_through_MFC_2:flow_type = "mass flow" ; mass_flow_through_MFC_2:reference = "volume of mass flow corresponding to 25 deg C, 1013.25 hPa" ; mass_flow_through_MFC_2:comment = "Mass flow related to Vol Flow by F_vol=F_mass*P_standard*T_local/(P_local*T_standard) with P_standard = 14.696 PSI and T_standard = 25 C = 298.25 K" ; float mass_flow_through_MFC_3(time) ; mass_flow_through_MFC_3:long_name = "Actual mass flow through MFC #3" ; mass_flow_through_MFC_3:units = "L/min" ; mass_flow_through_MFC_3:missing_value = -9999.f ; mass_flow_through_MFC_3:flow_type = "mass flow" ; mass_flow_through_MFC_3:reference = "volume of mass flow corresponding to 25 deg C, 1013.25 hPa" ; mass_flow_through_MFC_3:comment = "Mass flow related to Vol Flow by F_vol=F_mass*P_standard*T_local/(P_local*T_standard) with P_standard = 14.696 PSI and T_standard = 25 C = 298.25 K" ; float mass_flow_through_MFC_4(time) ; mass_flow_through_MFC_4:long_name = "Actual mass flow through MFC #4" ; mass_flow_through_MFC_4:units = "L/min" ; mass_flow_through_MFC_4:missing_value = -9999.f ; mass_flow_through_MFC_4:flow_type = "mass flow" ; mass_flow_through_MFC_4:reference = "volume of mass flow corresponding to 25 deg C, 1013.25 hPa" ; mass_flow_through_MFC_4:comment = "Mass flow related to Vol Flow by F_vol=F_mass*P_standard*T_local/(P_local*T_standard) with P_standard = 14.696 PSI and T_standard = 25 C = 298.25 K" ; float mass_flow_through_MFC_for_sample_flow(time) ; mass_flow_through_MFC_for_sample_flow:long_name = "Actual mass flow through MFC for sample flow" ; mass_flow_through_MFC_for_sample_flow:units = "L/min" ; mass_flow_through_MFC_for_sample_flow:missing_value = -9999.f ; mass_flow_through_MFC_for_sample_flow:flow_type = "mass flow" ; mass_flow_through_MFC_for_sample_flow:reference = "volume of mass flow corresponding to 25 deg C, 1013.25 hPa" ; mass_flow_through_MFC_for_sample_flow:comment = "Mass flow related to Vol Flow by F_vol=F_mass*P_standard*T_local/(P_local*T_standard) with P_standard = 14.696 PSI and T_standard = 25 C = 298.25 K" ; float volume_flow_through_MFC_1(time) ; volume_flow_through_MFC_1:long_name = "Volume flow through Mass Flow Controller #1" ; volume_flow_through_MFC_1:units = "L/min" ; volume_flow_through_MFC_1:missing_value = -9999.f ; volume_flow_through_MFC_1:flow_type = "mass flow" ; volume_flow_through_MFC_1:reference = "volume of mass flow corresponding to 25 deg C, 1013.25 hPa" ; float volume_flow_through_MFC_2(time) ; volume_flow_through_MFC_2:long_name = "Volume flow through Mass Flow Controller #2" ; volume_flow_through_MFC_2:units = "L/min" ; volume_flow_through_MFC_2:missing_value = -9999.f ; volume_flow_through_MFC_2:flow_type = "mass flow" ; volume_flow_through_MFC_2:reference = "volume of mass flow corresponding to 25 deg C, 1013.25 hPa" ; float volume_flow_through_MFC_3(time) ; volume_flow_through_MFC_3:long_name = "Volume flow through Mass Flow Controller #3" ; volume_flow_through_MFC_3:units = "L/min" ; volume_flow_through_MFC_3:missing_value = -9999.f ; volume_flow_through_MFC_3:flow_type = "mass flow" ; volume_flow_through_MFC_3:reference = "volume of mass flow corresponding to 25 deg C, 1013.25 hPa" ; float volume_flow_through_MFC_4(time) ; volume_flow_through_MFC_4:long_name = "Volume flow through Mass Flow Controller #4" ; volume_flow_through_MFC_4:units = "L/min" ; volume_flow_through_MFC_4:missing_value = -9999.f ; volume_flow_through_MFC_4:flow_type = "mass flow" ; volume_flow_through_MFC_4:reference = "volume of mass flow corresponding to 25 deg C, 1013.25 hPa" ; float volume_flow_through_MFC_for_sample_flow(time) ; volume_flow_through_MFC_for_sample_flow:long_name = "Volume flow through Mass Flow Controller for sample flow" ; volume_flow_through_MFC_for_sample_flow:units = "L/min" ; volume_flow_through_MFC_for_sample_flow:missing_value = -9999.f ; volume_flow_through_MFC_for_sample_flow:flow_type = "mass flow" ; volume_flow_through_MFC_for_sample_flow:reference = "volume of mass flow corresponding to 25 deg C, 1013.25 hPa" ; float P_at_MFC_1(time) ; P_at_MFC_1:long_name = "Air pressure at Mass Flow Controller #1" ; P_at_MFC_1:units = "hPa" ; P_at_MFC_1:missing_value = -9999.f ; float P_at_MFC_2(time) ; P_at_MFC_2:long_name = "Air pressure at Mass Flow Controller #2" ; P_at_MFC_2:units = "hPa" ; P_at_MFC_2:missing_value = -9999.f ; float P_at_MFC_3(time) ; P_at_MFC_3:long_name = "Air pressure at Mass Flow Controller #3" ; P_at_MFC_3:units = "hPa" ; P_at_MFC_3:missing_value = -9999.f ; float P_at_MFC_4(time) ; P_at_MFC_4:long_name = "Air pressure at Mass Flow Controller #4" ; P_at_MFC_4:units = "hPa" ; P_at_MFC_4:missing_value = -9999.f ; float P_at_MFC_for_sample_flow(time) ; P_at_MFC_for_sample_flow:long_name = "Air pressure at Mass Flow Controller for sample flow" ; P_at_MFC_for_sample_flow:units = "hPa" ; P_at_MFC_for_sample_flow:missing_value = -9999.f ; float T_at_MFC_1(time) ; T_at_MFC_1:long_name = "Air temperature at Mass Flow Controller #1" ; T_at_MFC_1:units = "degC" ; T_at_MFC_1:missing_value = -9999.f ; float T_at_MFC_2(time) ; T_at_MFC_2:long_name = "Air temperature at Mass Flow Controller #2" ; T_at_MFC_2:units = "degC" ; T_at_MFC_2:missing_value = -9999.f ; float T_at_MFC_3(time) ; T_at_MFC_3:long_name = "Air temperature at Mass Flow Controller #3" ; T_at_MFC_3:units = "degC" ; T_at_MFC_3:missing_value = -9999.f ; float T_at_MFC_4(time) ; T_at_MFC_4:long_name = "Air temperature at Mass Flow Controller #4" ; T_at_MFC_4:units = "degC" ; T_at_MFC_4:missing_value = -9999.f ; float T_at_MFC_for_sample_flow(time) ; T_at_MFC_for_sample_flow:long_name = "Air temperature at Mass Flow Controller for sample flow" ; T_at_MFC_for_sample_flow:units = "degC" ; T_at_MFC_for_sample_flow:missing_value = -9999.f ; int gas_error_for_MFC_1(time) ; gas_error_for_MFC_1:long_name = "Air setting for Mass Flow Controller #1" ; gas_error_for_MFC_1:units = "1" ; gas_error_for_MFC_1:missing_value = -9999 ; gas_error_for_MFC_1:flag_values = 0, -1 ; gas_error_for_MFC_1:flag_meanings = "expected_input_of_air non_air_value_found" ; gas_error_for_MFC_1:comment = "This will be 0 if the mass flow controller is configured for use in air. Non-zero values indicate an error state for the mass flow controller." ; int gas_error_for_MFC_2(time) ; gas_error_for_MFC_2:long_name = "Air setting for Mass Flow Controller #2" ; gas_error_for_MFC_2:units = "1" ; gas_error_for_MFC_2:missing_value = -9999 ; gas_error_for_MFC_2:flag_values = 0, -1 ; gas_error_for_MFC_2:flag_meanings = "expected_input_of_air non_air_value_found" ; gas_error_for_MFC_2:comment = "This will be 0 if the mass flow controller is configured for use in air. Non-zero values indicate an error state for the mass flow controller." ; int gas_error_for_MFC_3(time) ; gas_error_for_MFC_3:long_name = "Air setting for Mass Flow Controller #3" ; gas_error_for_MFC_3:units = "1" ; gas_error_for_MFC_3:missing_value = -9999 ; gas_error_for_MFC_3:flag_values = 0, -1 ; gas_error_for_MFC_3:flag_meanings = "expected_input_of_air non_air_value_found" ; gas_error_for_MFC_3:comment = "This will be 0 if the mass flow controller is configured for use in air. Non-zero values indicate an error state for the mass flow controller." ; int gas_error_for_MFC_4(time) ; gas_error_for_MFC_4:long_name = "Air setting for Mass Flow Controller #4" ; gas_error_for_MFC_4:units = "1" ; gas_error_for_MFC_4:missing_value = -9999 ; gas_error_for_MFC_4:flag_values = 0, -1 ; gas_error_for_MFC_4:flag_meanings = "expected_input_of_air non_air_value_found" ; gas_error_for_MFC_4:comment = "This will be 0 if the mass flow controller is configured for use in air. Non-zero values indicate an error state for the mass flow controller." ; int gas_error_for_MFC_for_sample_flow(time) ; gas_error_for_MFC_for_sample_flow:long_name = "Air setting for Mass Flow Controller for sample flow" ; gas_error_for_MFC_for_sample_flow:units = "1" ; gas_error_for_MFC_for_sample_flow:missing_value = -9999 ; gas_error_for_MFC_for_sample_flow:flag_values = 0, -1 ; gas_error_for_MFC_for_sample_flow:flag_meanings = "expected_input_of_air non_air_value_found" ; gas_error_for_MFC_for_sample_flow:comment = "This will be 0 if the mass flow controller is configured for use in air. Non-zero values indicate an error state for the mass flow controller." ; float lat ; lat:long_name = "North latitude" ; lat:units = "degree_N" ; lat:valid_min = -90.f ; lat:valid_max = 90.f ; lat:standard_name = "latitude" ; float lon ; lon:long_name = "East longitude" ; lon:units = "degree_E" ; lon:valid_min = -180.f ; lon:valid_max = 180.f ; lon:standard_name = "longitude" ; float alt ; alt:long_name = "Altitude above mean sea level" ; alt:units = "m" ; alt:standard_name = "altitude" ; // global attributes: :command_line = "aosneph_ingest -s epc -f M1" ; :Conventions = "ARM-1.3" ; :process_version = "ingest-aosneph-1.1-0.el7" ; :dod_version = "aoshumidigraph-a1-1.0" ; :input_source = "/data/collection/epc/epcaosnephM1.00/epcaosM1.humidgr.05s.00.20240207.000000.raw.tsv" ; :site_id = "epc" ; :platform_id = "aoshumidigraph" ; :facility_id = "M1" ; :data_level = "a1" ; :location_description = "Eastern Pacific Cloud Aerosol Precipitation Experiment (EPCAPE), Scripps Pier, La Jolla, CA" ; :datastream = "epcaoshumidigraphM1.a1" ; :sampling_interval = "5 seconds" ; :doi = "10.5439/1258772" ; :humidigraph_description = "The humidigraph consists of a dry air supply, a moist air supply (saturator), and switchable valves to supply either of these air streams to two independent groups of nafion columns in order to adjust the humidity of the sample stream. Nafion membranes transport water vapor from one air stream to another. This allows the aerosol concentration to be unchanged during the deliquescence or efflorescence experiments in the humidigraph. The first set of nafion columns is typically used to precondition the sample stream to establish either a low or high RH state depending on whether the deliquescent or efflorescent humidification branch is being measured. The second set of nafion columns is used to expose the preconditioned sample stream to ramped RH conditions.\n", "Two mass flow controllers are required for each group of nafion columns with each pair typically operated in tandem, but other coordinated configurations are possible and are likely in future deployment. (In particular, deployments in humid environments may utilize up to three nafion columns to dry air for the entire AOS system, leaving only one remaining column for ramped use.) There is a fifth mass flow controller in front of the main system pump responsible for controlling the sample flow through the entire system. The mass flow controllers actually operate volumetrically so accurate temperature and pressure measurements at the location of each controller are required to convert the volume flow to mass flow." ; :AOS_DAC_type = "D" ; :history = "created by user dsmgr on machine prod-proc2.adc.arm.gov at 2024-02-07 01:25:01, using ingest-aosneph-1.1-0.el7" ; }