Data Quality Reports for Session: 128644 User: dmfoper Completed: 06/26/2010


TABLE OF CONTENTS

DQR IDSubjectData Streams Affected
D010423.14SGP/SIRS/E13 - Diffuse Pyranometer Thermal OffsetssgpsirsE13.a0, sgpsirsE13.a1
D970927.1SIRS NIPs affected by condensation at E8, E11, E13, & E15sgpsirsE11.a1, sgpsirsE13.a1, sgpsirsE15.a1, sgpsirsE8.a1
D980224.1Reference Broadband Shortwave Data at SGP Central Cluster during Fall IOP '97sgpbsrnC1.00, sgpbsrnC1.a0, sgpbsrnC1.a1, sgpsirosE13.00, sgpsirosE13.a1, sgpsirsE13.a0,
sgpsirsE13.a1


DQRID : D010423.14
Start DateStart TimeEnd DateEnd Time
08/29/1997042102/22/20012021
Subject:
SGP/SIRS/E13 - Diffuse Pyranometer Thermal Offsets
DataStreams:sgpsirsE13.a0, sgpsirsE13.a1
Description:
Broadband downwelling shortwave diffuse (sky) irradiance measurements available from SIRS
during the period of this Data Quality Report (DQR), require adjustment for thermal
offsets.  These thermal, or ?zero? offsets refer to the generally reduced output signals
from a shaded pyranometer due to the exchange of longwave (infrared) irradiance between
the single black thermopile detector, the protective glass domes surrounding the
detector, and the atmosphere. Originally considered an acceptable nighttime response of
thermopile-type pyranometers, the generally negative bias is now recognized to
significantly effect the accuracy of SIRS diffuse irradiance data during daylight
periods.

Studies of the Eppley Laboratory, Inc. Model PSP (Precision Spectral Pyranometer), used
for the SIRS   measurements of diffuse irradiance, suggest the thermal offset correction
can range from near 0 to as much as 30 Watts per square meter, depending on the
coincident net longwave, or infrared irradiance [1, 2].  Under very clear-sky conditions,
the diffuse irradiance from a shaded PSP can be less than the minimum physical limit
defined by radiative transfer model estimates based only on Rayleigh scattering effects.

A correction method has been developed for adjusting SIRS diffuse irradiance data [3]. 
The resulting Value Added Product (VAP) will be applied to SIRS data for the period of
this DQR.  The VAP will not be applied to SIROS data collected before the instrument
platform was converted to SIRS.

Additionally, the Model PSP radiometer has been replaced by a Model 8-48 which uses a
black and white thermopile detector known to reduce the thermal offset errors to less
than 2 Watts per square meter [3].  The radiometer replacement at this SIRS location was
completed on the ending date of this DQR.

References:
1. Gulbrandsen, A., 1978:  On the use of pyranometers in the study of spectral solar
radiation and atmospheric aerosols.  J. Appl. Meteorol., 17, 899-904.
2. Cess, R. D., X. Jing, T. Qian, and M. Sun, 1999:  Validation strategies applied to the
measurement of total, direct and diffuse shortwave radiation at the surface.  J. Geophys.
Res.
3. Dutton, E.G., J. Michalsky, T. Stoffel, B. Forgan, J. Hickey, D. Nelson, T. Alberta,
and I. Reda, 2001:  Measurement of Broadband Diffuse Solar Irradiance Using Current
Commercial Instrumentation With a Correction for Thermal Offset Errors. J. Atmos. Oceanic
Tech.   Vol 18, No. 3, 297-314.   (March 2001)
Measurements:sgpsirsE13.a0:
  • Shaded pyranometer voltage(short_diffuse)

sgpsirsE13.a1:
  • Downwelling Shortwave Hemispheric Irradiance, Pyranometer, Standard Deviation(down_short_diffuse_hemisp_std)
  • Downwelling Shortwave Diffuse Hemispheric Irradiance, Ventilated Pyranometer,
    Maxima(down_short_diffuse_hemisp_max)
  • Downwelling Shortwave Diffuse Hemispheric Irradiance, Ventilated Pyranometer,
    Minima(down_short_diffuse_hemisp_min)
  • Downwelling Shortwave Diffuse Hemispheric Irradiance, Ventilated Pyranometer(down_short_diffuse_hemisp)


Back To Table of Contents

DQRID : D970927.1
Start DateStart TimeEnd DateEnd Time
09/26/1997123009/26/19971415
09/26/1997123009/26/19971330
09/26/1997123009/26/19971345
Subject:
SIRS NIPs affected by condensation at E8, E11, E13, & E15
DataStreams:sgpsirsE11.a1, sgpsirsE13.a1, sgpsirsE15.a1, sgpsirsE8.a1
Description:
Comparison of data from the unshaded PSP to that derived from the 'direct
+ diffuse' (NIP + shaded PSP) indicated low values of the 'direct+diffuse' combination 
starting at sunrise and lasting for about an hour at E8, E11, E13 and E15.
Futher examination revealed that the NIPs were reading low and were likely
affected by condensation during this brief period. Weather conditions were
foggy over the area early that morning, and fog quickly dissipated after 
sunrise.
Measurements:sgpsirsE15.a1:
  • Shortwave Direct Normal Irradiance, Pyrgeometer, Minima(short_direct_normal_min)
  • Shortwave Direct Normal Irradiance, Pyrgeometer, Standard Deviation(short_direct_normal_std)
  • Shortwave Direct Normal Irradiance, Pyrgeometer, Maxima(short_direct_normal_max)
  • Shortwave Direct Normal Irradiance, Pyrgeometer(short_direct_normal)

sgpsirsE11.a1:
  • Shortwave Direct Normal Irradiance, Pyrgeometer, Standard Deviation(short_direct_normal_std)
  • Shortwave Direct Normal Irradiance, Pyrgeometer, Maxima(short_direct_normal_max)
  • Shortwave Direct Normal Irradiance, Pyrgeometer, Minima(short_direct_normal_min)
  • Shortwave Direct Normal Irradiance, Pyrgeometer(short_direct_normal)

sgpsirsE8.a1:
  • Shortwave Direct Normal Irradiance, Pyrgeometer(short_direct_normal)
  • Shortwave Direct Normal Irradiance, Pyrgeometer, Standard Deviation(short_direct_normal_std)
  • Shortwave Direct Normal Irradiance, Pyrgeometer, Minima(short_direct_normal_min)
  • Shortwave Direct Normal Irradiance, Pyrgeometer, Maxima(short_direct_normal_max)

sgpsirsE13.a1:
  • Shortwave Direct Normal Irradiance, Pyrgeometer, Minima(short_direct_normal_min)
  • Shortwave Direct Normal Irradiance, Pyrgeometer, Maxima(short_direct_normal_max)
  • Shortwave Direct Normal Irradiance, Pyrgeometer, Standard Deviation(short_direct_normal_std)
  • Shortwave Direct Normal Irradiance, Pyrgeometer(short_direct_normal)


Back To Table of Contents

DQRID : D980224.1
Start DateStart TimeEnd DateEnd Time
09/17/1997000010/03/19972359
Subject:
Reference Broadband Shortwave Data at SGP Central Cluster during Fall IOP '97
DataStreams:sgpbsrnC1.00, sgpbsrnC1.a0, sgpbsrnC1.a1, sgpsirosE13.00, sgpsirosE13.a1, sgpsirsE13.a0,
sgpsirsE13.a1
Description:
This is a recommendation for the best available broadband shortwave data from the SGP 
Central Cluster (Lamont, OK) during the Combined Fall IOP, 15 Sept - 5 Oct 1997.

Data available from the SGP Radiometer Calibration Facility (RCF) has lower measurement 
uncertainties than similar measurements from the C1, E-13, and BSRN/BRS platforms.

The RCF data were collected using the same Broadband Outdoor Radiometer CALibration 
(BORCAL) system used for routine calibration of pyranometers and pyrheliometers at the RCF.  
The data are available for 30-second interval.  
Direct normal irradiance measurements from a windowed RCF Absolute Cavity Radiometer 
during the IOP is considered more accurate (+/- 0.5%) than the Normal Incidence Pyrheliometers 
(NIP) at the Central Cluster (+/- 2%).
The Automated Hickey-Frieden cavity radiometer is electrically self-calibrating and 
provides reference standard data suitable for the calibration of the NIPs used at all the CART 
sites.

Diffuse horizontal irradiance is available as the average of two Eppley Precision Spectral 
Pyranometers and is considered slightly more accurate than the downwelling diffuse (DD) 
data from the Central Cluster instruments.
The RCF data will have periodic gaps during the electrical calibration intervals (about 
6-10 minutes, 4 or 5 times per day).
The reference global horizontal (or Downwelling Shortwave - DS) has been computed from the 
measured direct normal and diffuse components:
DS = NIP x Cos(Z) + DD,
where, Z = solar zenith angle.

All RCF data collected during the IOP are on the ARM IOP Web page 
(iop.archive.arm.gov/arm-iop). 
with other data from the Fall97 shortwave IOP.

Additional corrections to the diffuse data may be possible after researching PSP nighttime 
offsets.

Data from C1, E-13, and BSRN/BRS platforms during the SW-IOP '97 are still being 
investigated.
Measurements:sgpsirosE13.a1:
  • Downwelling Longwave Diffuse Hemispheric Irradiance, Ventilated Pyrgeometer(down_long_diffuse_hemisp)
  • Direct Normal Irradiance, Uncalibrated Silicon Detector, NIMFR(direct_norm_broadband)
  • Downwelling Shortwave Diffuse Hemispheric Irradiance, Ventilated Pyranometer(down_short_diffuse_hemisp)
  • Upwelling (10 meter) Longwave Hemispheric Irradiance, Pyrgeometer(up_long_hemisp)
  • Ventilated Pyrgeometer Case Temperature(down_long_case_temp)
  • Ventilated Pyrgeometer Dome Temperature(down_long_dome_temp)
  • Direct Normal Irradiance, NIMFR(direct_norm_narrowband)
  • Hemispheric Irradiance, MFRSR(hemisp_broadband)
  • Diffuse Hemispheric Broadband Irradiance (Approximate), MFRSR(diffuse_hemisp_broadband)
  • Hemispheric Irradiance, MFRSR(hemisp_narrowband)
  • Diffuse Hemispheric Irradiance, MFRSR(diffuse_hemisp_narrowband)
  • Upwelling (10 meter) Shortwave Hemispheric Irradiance, Pyranometer(up_short_hemisp)
  • Shortwave Direct Normal Irradiance, Pyrgeometer(short_direct_normal)
  • Down-welling unshaded pyranometer voltage(down_short_hemisp)

sgpbsrnC1.00:
  • null(Raw data stream - documentation not supported)

sgpbsrnC1.a1:
  • Pyrheliometer voltage(nip)
  • Downwelling hemispheric infrared irradiance(psig)
  • CALCULATED downwelling hemispheric diffuse solar irradiance(psp1)
  • Observed downwelling hemispheric total solar irradiance (direct+diffuse)(psp2)

sgpbsrnC1.a0:
  • Standard deviation for unshaded pyranometer(spsp2)
  • Standard deviation for shaded pyranometer(spsp1)
  • Standard deviation for pyrheliometer(snip)
  • Standard deviation for pyrgeometer thermopile(ssig)
  • Pyrheliometer voltage(nip)
  • CALCULATED downwelling hemispheric diffuse solar irradiance(psp1)
  • Downwelling hemispheric infrared irradiance(psig)

sgpsirosE13.00:
  • null(Raw data stream - documentation not supported)

sgpsirsE13.a0:
  • Down-welling unshaded pyranometer voltage(down_short_hemisp)
  • Upwelling (10 meter) Shortwave Hemispheric Irradiance, Pyranometer(up_short_hemisp)
  • Shaded pyranometer voltage(short_diffuse)
  • Down-welling pyrgeometer thermopile voltage(down_long_hemisp)
  • Upwelling (10 meter) Longwave Hemispheric Irradiance, Pyrgeometer(up_long_hemisp)

sgpsirsE13.a1:
  • Upwelling (10 meter) Longwave Hemispheric Irradiance, Pyrgeometer, Standard
    Deviation(up_long_hemisp_std)
  • Downwelling Shortwave Hemispheric Irradiance, Pyranometer, Standard Deviation(down_short_diffuse_hemisp_std)
  • Upwelling (10 meter) Longwave Hemispheric Irradiance, Pyrgeometer(up_long_hemisp)
  • Downwelling Shortwave Hemispheric Irradiance, Ventilated Pyranometer, Minima(down_short_hemisp_min)
  • Down-welling unshaded pyranometer voltage(down_short_hemisp)
  • Down-welling pyrgeometer thermopile voltage(down_long_hemisp)
  • Downwelling Shortwave Diffuse Hemispheric Irradiance, Ventilated Pyranometer(down_short_diffuse_hemisp)
  • Upwelling (10 meter) Longwave Hemispheric Irradiance, Pyrgeometer, Maxima(up_long_hemisp_max)
  • Shortwave Direct Normal Irradiance, Pyrgeometer, Standard Deviation(short_direct_normal_std)
  • Downwelling Shortwave Diffuse Hemispheric Irradiance, Ventilated Pyranometer,
    Maxima(down_short_diffuse_hemisp_max)
  • Downwelling Longwave Hemispheric Irradiance, Ventilated Pyrgeometer, Standard
    Deviation(down_long_hemisp_std)
  • Shortwave Direct Normal Irradiance, Pyrgeometer, Maxima(short_direct_normal_max)
  • Upwelling (10 meter) Longwave Hemispheric Irradiance, Pyrgeometer, Minima(up_long_hemisp_min)
  • Upwelling (10 meter) Shortwave Hemispheric Irradiance, Pyranometer, Standard
    Deviation(up_short_hemisp_std)
  • Upwelling (10 meter) Shortwave Hemispheric Irradiance, Pyranometer, Minima(up_short_hemisp_min)
  • Shortwave Direct Normal Irradiance, Pyrgeometer(short_direct_normal)
  • Downwelling Shortwave Diffuse Hemispheric Irradiance, Ventilated Pyranometer,
    Minima(down_short_diffuse_hemisp_min)
  • Downwelling Shortwave Hemispheric Irradiance, Ventilated Pyranometer, Maxima(down_short_hemisp_max)
  • Shortwave Direct Normal Irradiance, Pyrgeometer, Minima(short_direct_normal_min)
  • Downwelling Longwave Hemispheric Irradiance, Ventilated Pyrgeometer, Maxima(down_long_hemisp_max)
  • Downwelling Longwave Hemispheric Irradiance, Ventilated Pyrgeometer, Minima(down_long_hemisp_min)
  • Upwelling (10 meter) Shortwave Hemispheric Irradiance, Pyranometer(up_short_hemisp)
  • Upwelling (10 meter) Shortwave Hemispheric Irradiance, Pyranometer, Maxima(up_short_hemisp_max)
  • Downwelling Shortwave Hemispheric Irradiance, Ventilated Pyranometer, Standard
    Deviation(down_short_hemisp_std)


Back To Table of Contents



END OF DATA