Data Quality Reports for Session: 121817 User: dmfoper Completed: 08/20/2009


TABLE OF CONTENTS

DQR IDSubjectData Streams Affected
D030902.1SGP/MWR/C1 - no air temperature signalsgpmwrlosC1.b1, sgpmwrtipC1.a1
D041001.3SGP/MWR/C1 - Instrument problemsgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1
D041014.1SGP/MWR/C1 - thermal instabilitysgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1
D041117.2SGP/MWR/C1 - Reprocess: wrong retrievalssgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1, sgpqmemwrcolC1.c1
D050722.1SGP/MWR/C1 - REPROCESS - Revised Retrieval Coefficientssgp1mwravgC1.c1, sgp5mwravgC1.c1, sgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1,
sgpqmemwrcolC1.c1
D050915.1SGP/MWR/C1 - Instrument noise problemsgp1mwravgC1.c1, sgp5mwravgC1.c1, sgpmwrlosC1.b1, sgpmwrtipC1.a1
D051011.6SGP/MWR/C1 - New software version (4.15) installedsgpmwrlosC1.b1, sgpmwrtipC1.a1
D060717.2SGP/MWR/C1 - Spikes in ambient temperature readingssgpmwrlosC1.b1, sgpmwrtipC1.a1
D070314.2SGP/MWR/C1/E14 - Freezing rain-Incorrect rain flagsgpmwrlosC1.b1, sgpmwrlosE14.b1, sgpmwrtipC1.a1, sgpmwrtipE14.a1


DQRID : D030902.1
Start DateStart TimeEnd DateEnd Time
08/22/2003211509/30/20041835
Subject:
SGP/MWR/C1 - no air temperature signal
DataStreams:sgpmwrlosC1.b1, sgpmwrtipC1.a1
Description:
When the new blower was upgraded by Radiometrics and reinstalled on the MWR, the air 
temperature sensor failed to properly report. It was determined that the wires carrying the 
signal to the analog board did not conform to the standard expected by the upgraded blower. 
The problem was corrected by changing the wiring.
Measurements:sgpmwrtipC1.a1:
  • Ambient temperature(tkair)

sgpmwrlosC1.b1:
  • Ambient temperature(tkair)


Back To Table of Contents

DQRID : D041001.3
Start DateStart TimeEnd DateEnd Time
09/21/2004211409/24/20041354
09/26/2004233209/27/20040317
09/27/2004121409/30/20041820
Subject:
SGP/MWR/C1 - Instrument problem
DataStreams:sgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1
Description:
The MWR mixer temperature, blackbody temperature, and moisture flag are incorrect. This 
began when the instrument was returned to service after the analog board was temporarily 
removed to check the presence and absence of certain resistors. The board must have been 
accidently damaged during this process.
Measurements:sgpmwrtipC1.a1:
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • (tknd)
  • Noise injection temp at 23.8 GHz derived from this tip(tnd23I)
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)
  • Noise injection temp at 31.4 GHz derived from this tip(tnd31I)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Blackbody kinetic temperature(tkbb)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • Ambient temperature(tkair)
  • Mixer kinetic (physical) temperature(tkxc)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)

sgpmwrlosC1.b1:
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)
  • (tknd)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Blackbody kinetic temperature(tkbb)
  • Ambient temperature(tkair)
  • Mixer kinetic (physical) temperature(tkxc)
  • Temperature correction coefficient at 23.8 GHz(tc23)

sgpmwrlosC1.a1:
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Blackbody kinetic temperature(tkbb)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • (tknd)
  • Ambient temperature(tkair)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • Mixer kinetic (physical) temperature(tkxc)


Back To Table of Contents

DQRID : D041014.1
Start DateStart TimeEnd DateEnd Time
09/30/2004183510/13/20042118
Subject:
SGP/MWR/C1 - thermal instability
DataStreams:sgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1
Description:
The analog board was replaced with a spare (D041001.3) with a reference temperature that 
was set too low (306 K) so that during periods of high ambient temperature, the instrument 
became thermally unstable. The problem was corrected when the temperature setting was 
increased (to 311 K).
Measurements:sgpmwrtipC1.a1:
  • 31.4 GHz sky brightness temperature derived from tip curve(tbsky31tip)
  • 23.8 GHz sky brightness temperature derived from tip curve(tbsky23tip)
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)

sgpmwrlosC1.b1:
  • Sky brightness temperature at 31.4 GHz(tbsky31)
  • MWR column precipitable water vapor(vap)
  • Sky brightness temperature at 23.8 GHz(tbsky23)
  • Averaged total liquid water along LOS path(liq)

sgpmwrlosC1.a1:
  • Averaged total liquid water along LOS path(liq)
  • MWR column precipitable water vapor(vap)
  • Sky brightness temperature at 31.4 GHz(tbsky31)
  • Sky brightness temperature at 23.8 GHz(tbsky23)


Back To Table of Contents

DQRID : D041117.2
Start DateStart TimeEnd DateEnd Time
09/21/2004164311/11/20042100
Subject:
SGP/MWR/C1 - Reprocess: wrong retrievals
DataStreams:sgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1, sgpqmemwrcolC1.c1
Description:
When the computer and core configuration were upgraded, retrieval coefficients for BF1 
were accidently included in the configuration file.
The correct coefficients for CF1 were applied when the configuration file was updated.
Measurements:sgpmwrtipC1.a1:
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)

sgpmwrlosC1.b1:
  • MWR column precipitable water vapor(vap)
  • Averaged total liquid water along LOS path(liq)

sgpqmemwrcolC1.c1:
  • Ensemble average for MWR vapor in window centered about balloon release(mean_vap_mwr)
  • Ensemble average for MWR liquid in window centered about balloon release(mean_liq_mwr)

sgpmwrlosC1.a1:
  • Averaged total liquid water along LOS path(liq)
  • MWR column precipitable water vapor(vap)


Back To Table of Contents

DQRID : D050722.1
Start DateStart TimeEnd DateEnd Time
04/16/2002200006/28/20052300
Subject:
SGP/MWR/C1 - REPROCESS - Revised Retrieval Coefficients
DataStreams:sgp1mwravgC1.c1, sgp5mwravgC1.c1, sgpmwrlosC1.a1, sgpmwrlosC1.b1, sgpmwrtipC1.a1,
sgpqmemwrcolC1.c1
Description:
IN THE BEGINNING (June 1992), the retrieval coefficients used to derive the precipitable 
water vapor (PWV) and liquid water path (LWP) from the MWR brightness temperatures were 
based on the Liebe and Layton (1987) water vapor and oxygen absorption model and the Grant 
(1957) liquid water absorption model.  

Following the SHEBA experience, revised retrievals based on the more recent Rosenkranz 
(1998) water vapor and oxygen absorption models and the Liebe (1991) liquid waer absorption 
model were developed.  The Rosenkranz water vapor absorption model resulted a 2 percent 
increase in PWV relative to the earlier Liebe and Layton model.  The Liebe liquid water 
absorption model decreased the LWP by 10% relative to the Grant model.  However, the 
increased oxygen absorption caused a 0.02-0.03 mm (20-30 g/m2) reduction in LWP, which was 
particularly significant for low LWP conditions (i.e. thin clouds encountered at SHEBA).

Recently, it has been shown (Liljegren, Boukabara, Cady-Pereira, and Clough, TGARS v. 43, 
pp 1102-1108, 2005) that the half-width of the 22 GHz water vapor line from the HITRAN 
compilation, which is 5 percent smaller than the Liebe and Dillon (1969) half-width used in 
Rosenkranz (1998), provided a better fit to the microwave brightness temperature 
measurements at 5 frequencies in the range 22-30 GHz, and yielded more accurate retrievals.  
Accordingly, revised MWR retrieval coefficients have been developed using MONORTM, which 
utilizes the HITRAN compilation for its spectroscopic parameters.  These new retrievals 
provide 3 percent less PWV and 2.6 percent greater LWP than the previous retrievals based on 
Rosenkranz (1998).

Although the MWR data will be reprocessed to apply the new monortm-based retrievals, for 
most purposes it will be sufficient to correct the data using the following factors:

PWV_MONORTM = 0.9695 * PWV_ROSENKRANZ
LWP_MONORTM = 1.026  * LWP_ROSENKRANZ

The Rosenkranz-based retrieval coefficients became active as follows (BCR 456):
SGP/C1 (Lamont)     4/16/2002, 2000
SGP/B1 (Hillsboro)  4/12/2002, 1600
SGP/B4 (Vici)       4/15/2002, 2300
SGP/B5 (Morris)     4/15/2002, 2300
SGP/B6 (Purcell)    4/16/2002, 2200
SGP/E14(Lamont)     4/16/2002, 0000
NSA/C1 (Barrow)     4/25/2002, 1900 
NSA/C2 (Atqasuk)    4/18/2002, 1700
TWP/C1 (Manus)      5/04/2002, 0200
TWP/C2 (Nauru)      4/27/2002, 0600
TWP/C3 (Darwin)     inception

The MONORTM-based retrieval coefficients became active as follows (BCR 984):

SGP/C1 (Lamont)     6/28/2005, 2300
SGP/B1 (Hillsboro)  6/24/2005, 2100
SGP/B4 (Vici)       6/24/2005, 2100
SGP/B5 (Morris)     6/24/2005, 2100
SGP/B6 (Purcell)    6/24/2005, 1942
SGP/E14(Lamont)     6/28/2005, 2300
NSA/C1 (Barrow)     6/29/2005, 0000 
NSA/C2 (Atqasuk)    6/29/2005, 0000
TWP/C1 (Manus)      6/30/2005, 2100
TWP/C2 (Nauru)      6/30/2005, 2100
TWP/C3 (Darwin)     6/30/2005, 2100
PYE/M1 (Pt. Reyes)  4/08/2005, 1900**

** At Pt. Reyes, the original retrieval coefficients implemented in March 2005 were based 
on a version of the Rosenkranz model that had been modified to use the HITRAN half-width 
at 22 GHz and to be consistent with the water vapor continuum in MONORTM.  These 
retrievals yield nearly identical results to the MONORTM retrievals.  Therefore the Pt. Reyes 
data prior to 4/08/2005 may not require reprocessing.
Measurements:sgpmwrtipC1.a1:
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)

sgp5mwravgC1.c1:
  • MWR column precipitable water vapor(vap)
  • Averaged total liquid water along LOS path(liq)

sgpmwrlosC1.b1:
  • MWR column precipitable water vapor(vap)
  • Averaged total liquid water along LOS path(liq)

sgp1mwravgC1.c1:
  • Averaged total liquid water along LOS path(liq)
  • MWR column precipitable water vapor(vap)

sgpqmemwrcolC1.c1:
  • Ensemble average for MWR vapor in window centered about balloon release(mean_vap_mwr)
  • Ensemble average for MWR liquid in window centered about balloon release(mean_liq_mwr)

sgpmwrlosC1.a1:
  • Averaged total liquid water along LOS path(liq)
  • MWR column precipitable water vapor(vap)


Back To Table of Contents

DQRID : D050915.1
Start DateStart TimeEnd DateEnd Time
07/28/2005140008/05/20051700
Subject:
SGP/MWR/C1 - Instrument noise problem
DataStreams:sgp1mwravgC1.c1, sgp5mwravgC1.c1, sgpmwrlosC1.b1, sgpmwrtipC1.a1
Description:
Various variables including the mixer temperatures were very noisy. After several attempts 
to fix the problem, the instrument was taken off line and returned to the manufacturer 
for repair.
Measurements:sgpmwrtipC1.a1:
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • 31.4 GHz blackbody(bb31)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • (tknd)
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Blackbody kinetic temperature(tkbb)
  • 23.8 GHz Blackbody signal(bb23)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • Ambient temperature(tkair)
  • Mixer kinetic (physical) temperature(tkxc)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • Noise injection temp at 23.8 GHz derived from this tip(tnd23I)
  • 31.4 GHz sky signal(tipsky31)
  • Noise injection temp at 31.4 GHz derived from this tip(tnd31I)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • 23.8 GHz sky signal(tipsky23)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • 31.4 GHz sky brightness temperature derived from tip curve(tbsky31tip)
  • 31.4 GHz goodness-of-fit coefficient(r31)
  • 23.8 GHz sky brightness temperature derived from tip curve(tbsky23tip)
  • 23.8 GHz goodness-of-fit coefficient(r23)

sgp5mwravgC1.c1:
  • Flag indicating where the initial surface water measurements are from: 0-> SMOS,
    1-> AERI(water_flag)
  • Fraction of data in averaging interval with water on Teflon window(water_flag_fraction)
  • 23.8 GHz sky brightness temperature(23tbsky)
  • Standard deviation about the mean for the IR brightness temperature(ir_temp_sdev)
  • Number of data points averaged out of 15(number_obs_averaged)
  • Standard deviation about the mean for the 31.4 GHz sky brightness temperature(tbsky31_sdev)
  • Standard deviation about the mean for the total water vapor amount(vap_sdev)
  • Averaged total liquid water along LOS path(liq)
  • IR Brightness Temperature(ir_temp)
  • Probability of level change in ratio of averaged brightness temps(prob_level_change)
  • Standard deviation about the mean for the 23.8 GHz sky brightness temperature(tbsky23_sdev)
  • Probability of slope change in ratio of averaged brightness temps(prob_slope_change)
  • Probability of outlier in ratio of averaged brightness temps(prob_outlier)
  • Sky brightness temperature at 23.8 GHz(tbsky23)
  • Sky brightness temperature at 31.4 GHz(tbsky31)
  • 31.4 GHz sky brightness temperature(31tbsky)
  • Standard deviation about the mean for the total liquid water amount(liq_sdev)
  • MWR column precipitable water vapor(vap)

sgpmwrlosC1.b1:
  • 31.4 GHz sky signal(sky31)
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • 23.8 GHz sky signal(sky23)
  • Sky brightness temperature at 31.4 GHz(tbsky31)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Averaged total liquid water along LOS path(liq)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • 31.4 GHz blackbody(bb31)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Blackbody kinetic temperature(tkbb)
  • Sky Infra-Red Temperature(sky_ir_temp)
  • MWR column precipitable water vapor(vap)
  • Ambient temperature(tkair)
  • 23.8 GHz Blackbody signal(bb23)
  • Sky brightness temperature at 23.8 GHz(tbsky23)
  • Mixer kinetic (physical) temperature(tkxc)
  • (tknd)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • Temperature correction coefficient at 23.8 GHz(tc23)

sgp1mwravgC1.c1:
  • Sky brightness temperature at 23.8 GHz(tbsky23)
  • Fraction of data in averaging interval flagged by Dynamic Linear Model as poten(dlm_flag_fraction)
  • Standard deviation about the mean for the total water vapor amount(vap_sdev)
  • 23.8 GHz sky brightness temperature(23tbsky)
  • Standard deviation about the mean for the IR brightness temperature(ir_temp_sdev)
  • IR Brightness Temperature(ir_temp)
  • MWR column precipitable water vapor(vap)
  • Number of contiguous periods in averaging interval flagged by Dynamic Linear Mo(dlm_flag_periods)
  • Standard deviation about the mean for the 23.8 GHz sky brightness temperature(tbsky23_sdev)
  • Standard deviation about the mean for the total liquid water amount(liq_sdev)
  • Number of contiguous periods in averaging interval with water on Teflon window(water_flag_periods)
  • Standard deviation about the mean for the 31.4 GHz sky brightness temperature(tbsky31_sdev)
  • Fraction of data in averaging interval with water on Teflon window(water_flag_fraction)
  • 31.4 GHz sky brightness temperature(31tbsky)
  • Averaged total liquid water along LOS path(liq)
  • Sky brightness temperature at 31.4 GHz(tbsky31)


Back To Table of Contents

DQRID : D051011.6
Start DateStart TimeEnd DateEnd Time
07/31/2002202708/04/20051959
Subject:
SGP/MWR/C1 - New software version (4.15) installed
DataStreams:sgpmwrlosC1.b1, sgpmwrtipC1.a1
Description:
A problem began with the installation of MWR.EXE version 4.12 in July 2002. The software 
had been upgraded from a "DOS" to a "Windows"-compiled program to address an earlier 
problem.  The software upgrade corrected the earlier problem but introduced a new one that 
caused line-of-sight observing cycles to be skipped, a 15% reduction in the number of tip 
curves, and saturation of CPU usage. Software versions 4.13 and 4.14 also produced these 
problems.

The new MWR software, version 4.15, was installed on 08/04/2005. As a consequence of this 
upgrade, the tip curve frequency increased. The tip cycle time decreased from ~60s to 
~50s.
Measurements:sgpmwrtipC1.a1:
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • 31.4 GHz blackbody(bb31)
  • Noise injection temp at 23.8 GHz derived from this tip(tnd23I)
  • (tknd)
  • 31.4 GHz sky signal(tipsky31)
  • Noise injection temp at 31.4 GHz derived from this tip(tnd31I)
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • 23.8 GHz Blackbody signal(bb23)
  • Blackbody kinetic temperature(tkbb)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • 23.8 GHz sky signal(tipsky23)
  • Ambient temperature(tkair)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)
  • Mixer kinetic (physical) temperature(tkxc)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • 31.4 GHz sky brightness temperature derived from tip curve(tbsky31tip)
  • 31.4 GHz goodness-of-fit coefficient(r31)
  • 23.8 GHz sky brightness temperature derived from tip curve(tbsky23tip)
  • 23.8 GHz goodness-of-fit coefficient(r23)

sgpmwrlosC1.b1:
  • 31.4 GHz sky signal(sky31)
  • (tknd)
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • 23.8 GHz sky signal(sky23)
  • Sky brightness temperature at 31.4 GHz(tbsky31)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Averaged total liquid water along LOS path(liq)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • 31.4 GHz blackbody(bb31)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Blackbody kinetic temperature(tkbb)
  • Sky Infra-Red Temperature(sky_ir_temp)
  • MWR column precipitable water vapor(vap)
  • Ambient temperature(tkair)
  • 23.8 GHz Blackbody signal(bb23)
  • Sky brightness temperature at 23.8 GHz(tbsky23)
  • Mixer kinetic (physical) temperature(tkxc)
  • Temperature correction coefficient at 23.8 GHz(tc23)


Back To Table of Contents

DQRID : D060717.2
Start DateStart TimeEnd DateEnd Time
07/13/2006120007/28/20061600
Subject:
SGP/MWR/C1 - Spikes in ambient temperature readings
DataStreams:sgpmwrlosC1.b1, sgpmwrtipC1.a1
Description:
There are intermittent spikes in the Tkair temperature (T ~ 400 K). On 7/28 the sensor 
was cleaned and the instrument power cycled following a power outage. Readings came back to 
normal.
Measurements:sgpmwrtipC1.a1:
  • Ambient temperature(tkair)

sgpmwrlosC1.b1:
  • Ambient temperature(tkair)


Back To Table of Contents

DQRID : D070314.2
Start DateStart TimeEnd DateEnd Time
01/12/2007000001/15/20070000
Subject:
SGP/MWR/C1/E14 - Freezing rain-Incorrect rain flag
DataStreams:sgpmwrlosC1.b1, sgpmwrlosE14.b1, sgpmwrtipC1.a1, sgpmwrtipE14.a1
Description:
Between 01/12 and 01/15 brightness temperatures show high values (Tb > 100 K) indicative 
of rain, however the wet_window flag is 0 (indicative of no rain). During that time there 
where freezing conditions with ice pellets that were not detected by the sensor. The high 
brightness temperatures may be due to melting ice on the window.
Measurements:sgpmwrtipC1.a1:
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)

sgpmwrlosC1.b1:
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)

sgpmwrtipE14.a1:
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)

sgpmwrlosE14.b1:
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)


Back To Table of Contents



END OF DATA