Data Quality Reports for Session: 119604 User: ronny1lein Completed: 05/14/2009


TABLE OF CONTENTS

DQR IDSubjectData Streams Affected
D050725.3SGP/MWR/B4 - Reprocess: Revised Retrieval Coefficientssgp5mwravgB4.c1, sgpmwrlosB4.a1, sgpmwrlosB4.b1, sgpmwrtipB4.a1, sgpqmemwrcolB4.c1
D050725.4SGP/MWR/B5 - Reprocess: Revised Retrieval Coefficientssgp5mwravgB5.c1, sgpmwrlosB5.a1, sgpmwrlosB5.b1, sgpmwrtipB5.a1, sgpqmemwrcolB5.c1
D050725.5SGP/MWR/B6 - Reprocess: Revised Retrieval Coefficientssgp5mwravgB6.c1, sgpmwrlosB6.a1, sgpmwrlosB6.b1, sgpmwrtipB6.a1, sgpqmemwrcolB6.c1
D050927.3SGP/MWR/B4 - New software version (4.15) installedsgpmwrlosB4.b1, sgpmwrtipB4.a1
D050927.4SGP/MWR/B5 - New software version (4.15) installedsgpmwrlosB5.b1, sgpmwrtipB5.a1
D050928.6SGP/MWR/B6 - New software version (4.15) installedsgpmwrlosB6.b1, sgpmwrtipB6.a1
D080701.2SGP/MWR/B4 - Missing datasgpmwrlosB4.b1, sgpmwrtipB4.a1
D080724.1SGP/MWR/B5 - Missing datasgpmwrlosB5.b1


DQRID : D050725.3
Start DateStart TimeEnd DateEnd Time
04/15/2002230006/24/20052100
Subject:
SGP/MWR/B4 - Reprocess: Revised Retrieval Coefficients
DataStreams:sgp5mwravgB4.c1, sgpmwrlosB4.a1, sgpmwrlosB4.b1, sgpmwrtipB4.a1, sgpqmemwrcolB4.c1
Description:
IN THE BEGINNING (June 1992), the retrieval coefficients used to derive the precipitable 
water vapor (PWV) and liquid water path (LWP) from the MWR brightness temperatures were 
based on the Liebe and Layton (1987) water vapor and oxygen absorption model and the Grant 
(1957) liquid water absorption model.

Following the SHEBA experience, revised retrievals based on the more recent Rosenkranz 
(1998) water vapor and oxygen absorption models and the Liebe (1991) liquid waer absorption 
model were developed.  The Rosenkranz water vapor absorption model resulted a 2 percent 
increase in PWV relative to the earlier Liebe and Layton model.  The Liebe liquid water 
absorption model decreased the LWP by 10% relative to the Grant model.  However, the 
increased oxygen absorption caused a 0.02-0.03 mm (20-30 g/m2) reduction in LWP, which was 
particularly significant for low LWP conditions (i.e. thin clouds encountered at SHEBA).

Recently, it has been shown (Liljegren, Boukabara, Cady-Pereira, and Clough, TGARS v. 43, 
pp 1102-1108, 2005) that the half-width of the 22 GHz water vapor line from the HITRAN 
compilation, which is 5 percent smaller than the Liebe and Dillon (1969) half-width used in 
Rosenkranz (1998), provided a better fit to the microwave brightness temperature 
measurements at 5 frequencies in the range 22-30 GHz, and yielded more accurate retrievals. 
Accordingly, revised MWR retrieval coefficients have been developed using MONORTM, which 
utilizes the HITRAN compilation for its spectroscopic parameters.  These new retrievals 
provide 3 percent less PWV and 2.6 percent greater LWP than the previous retrievals based on 
Rosenkranz (1998).

Although the MWR data will be reprocessed to apply the new monortm-based retrievals, for 
most purposes it will be sufficient to correct the data using the following factors:

PWV_MONORTM = 0.9695 * PWV_ROSENKRANZ
LWP_MONORTM = 1.026  * LWP_ROSENKRANZ

The Rosenkranz-based retrieval coefficients became active at SGP.B4 20020415.2300.  The 
MONORTM-based retrieval coefficients became active at SGP.B4 20050624.2100.

Note: a reprocessing effort is already underway to apply the Rosenkranz-based retrieval 
coefficients to all MWR prior to April 2002.  An additional reprocessing task will be 
undertaken to apply the MONORTM retrieval to all MWR data when the first is completed. Read 
reprocessing comments in the netcdf file header carefully to ensure you are aware which 
retrieval is in play.
Measurements:sgpmwrlosB4.b1:
  • Averaged total liquid water along LOS path(liq)
  • MWR column precipitable water vapor(vap)

sgpmwrtipB4.a1:
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)

sgpqmemwrcolB4.c1:
  • Ensemble average for MWR vapor in window centered about balloon release(mean_vap_mwr)
  • Ensemble average for MWR liquid in window centered about balloon release(mean_liq_mwr)

sgp5mwravgB4.c1:
  • Averaged total liquid water along LOS path(liq)
  • MWR column precipitable water vapor(vap)

sgpmwrlosB4.a1:
  • MWR column precipitable water vapor(vap)
  • Averaged total liquid water along LOS path(liq)


Back To Table of Contents

DQRID : D050725.4
Start DateStart TimeEnd DateEnd Time
04/15/2002230006/24/20052100
Subject:
SGP/MWR/B5 - Reprocess: Revised Retrieval Coefficients
DataStreams:sgp5mwravgB5.c1, sgpmwrlosB5.a1, sgpmwrlosB5.b1, sgpmwrtipB5.a1, sgpqmemwrcolB5.c1
Description:
IN THE BEGINNING (June 1992), the retrieval coefficients used to derive 
the precipitable water vapor (PWV) and liquid water path (LWP) from the 
MWR brightness temperatures were based on the Liebe and Layton (1987) 
water vapor and oxygen absorption model and the Grant (1957) liquid 
water absorption model.

Following the SHEBA experience, revised retrievals based on the more 
recent Rosenkranz (1998) water vapor and oxygen absorption models and 
the Liebe (1991) liquid waer absorption model were developed.  The 
Rosenkranz water vapor absorption model resulted a 2 percent increase 
in PWV relative to the earlier Liebe and Layton model.  The Liebe 
liquid water absorption model decreased the LWP by 10% relative to the 
Grant model.  However, the increased oxygen absorption caused a 
0.02-0.03 mm (20-30 g/m2) reduction in LWP, which was particularly 
significant for low LWP conditions (i.e. thin clouds encountered at 
SHEBA).

Recently, it has been shown (Liljegren, Boukabara, Cady-Pereira, and 
Clough, TGARS v. 43, pp 1102-1108, 2005) that the half-width of the 
22 GHz water vapor line from the HITRAN compilation, which is 5 percent 
smaller than the Liebe and Dillon (1969) half-width used in Rosenkranz 
(1998), provided a better fit to the microwave brightness temperature 
measurements at 5 frequencies in the range 22-30 GHz, and yielded more 
accurate retrievals. Accordingly, revised MWR retrieval coefficients 
have been developed using MONORTM, which utilizes the HITRAN compilation 
for its spectroscopic parameters.  These new retrievals provide 3 
percent less PWV and 2.6 percent greater LWP than the previous 
retrievals based on Rosenkranz (1998).

Although the MWR data will be reprocessed to apply the new monortm-based 
retrievals, for most purposes it will be sufficient to correct the data 
using the following factors:

PWV_MONORTM = 0.9695 * PWV_ROSENKRANZ
LWP_MONORTM = 1.026  * LWP_ROSENKRANZ

The Rosenkranz-based retrieval coefficients became active at SGP.B5 
20020415.2300.  The MONORTM-based retrieval coefficients became active 
at SGP.B5 20050624.2100.

Note: a reprocessing effort is already underway to apply the 
Rosenkranz-based retrieval coefficients to all MWR prior to April 
2002.  An additional reprocessing task will be undertaken to apply 
the MONORTM retrieval to all MWR data when the first is completed. 
Read reprocessing comments in the netcdf file header carefully to 
ensure you are aware which retrieval is in play.
Measurements:sgpmwrlosB5.a1:
  • MWR column precipitable water vapor(vap)
  • Averaged total liquid water along LOS path(liq)

sgpmwrtipB5.a1:
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)

sgpqmemwrcolB5.c1:
  • Ensemble average for MWR vapor in window centered about balloon release(mean_vap_mwr)
  • Ensemble average for MWR liquid in window centered about balloon release(mean_liq_mwr)

sgp5mwravgB5.c1:
  • MWR column precipitable water vapor(vap)
  • Averaged total liquid water along LOS path(liq)

sgpmwrlosB5.b1:
  • Averaged total liquid water along LOS path(liq)
  • MWR column precipitable water vapor(vap)


Back To Table of Contents

DQRID : D050725.5
Start DateStart TimeEnd DateEnd Time
04/16/2002220006/24/20051942
Subject:
SGP/MWR/B6 - Reprocess: Revised Retrieval Coefficients
DataStreams:sgp5mwravgB6.c1, sgpmwrlosB6.a1, sgpmwrlosB6.b1, sgpmwrtipB6.a1, sgpqmemwrcolB6.c1
Description:
IN THE BEGINNING (June 1992), the retrieval coefficients used to derive 
the precipitable water vapor (PWV) and liquid water path (LWP) from the 
MWR brightness temperatures were based on the Liebe and Layton (1987) 
water vapor and oxygen absorption model and the Grant (1957) liquid 
water absorption model.

Following the SHEBA experience, revised retrievals based on the more 
recent Rosenkranz (1998) water vapor and oxygen absorption models and 
the Liebe (1991) liquid waer absorption model were developed.  The 
Rosenkranz water vapor absorption model resulted a 2 percent increase 
in PWV relative to the earlier Liebe and Layton model.  The Liebe 
liquid water absorption model decreased the LWP by 10% relative to the 
Grant model.  However, the increased oxygen absorption caused a 
0.02-0.03 mm (20-30 g/m2) reduction in LWP, which was particularly 
significant for low LWP conditions (i.e. thin clouds encountered at 
SHEBA).

Recently, it has been shown (Liljegren, Boukabara, Cady-Pereira, and 
Clough, TGARS v. 43, pp 1102-1108, 2005) that the half-width of the 
22 GHz water vapor line from the HITRAN compilation, which is 5 percent 
smaller than the Liebe and Dillon (1969) half-width used in Rosenkranz 
(1998), provided a better fit to the microwave brightness temperature 
measurements at 5 frequencies in the range 22-30 GHz, and yielded more 
accurate retrievals. Accordingly, revised MWR retrieval coefficients 
have been developed using MONORTM, which utilizes the HITRAN compilation 
for its spectroscopic parameters.  These new retrievals provide 3 
percent less PWV and 2.6 percent greater LWP than the previous 
retrievals based on Rosenkranz (1998).

Although the MWR data will be reprocessed to apply the new monortm-based 
retrievals, for most purposes it will be sufficient to correct the data 
using the following factors:

PWV_MONORTM = 0.9695 * PWV_ROSENKRANZ
LWP_MONORTM = 1.026  * LWP_ROSENKRANZ

The Rosenkranz-based retrieval coefficients became active at SGP.B6 
20020416.2200.  The MONORTM-based retrieval coefficients became active 
at SGP.B6 20050624.1942.

Note: a reprocessing effort is already underway to apply the 
Rosenkranz-based retrieval coefficients to all MWR prior to April 
2002.  An additional reprocessing task will be undertaken to apply 
the MONORTM retrieval to all MWR data when the first is completed. 
Read reprocessing comments in the netcdf file header carefully to 
ensure you are aware which retrieval is in play.
Measurements:sgpmwrtipB6.a1:
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)

sgp5mwravgB6.c1:
  • Averaged total liquid water along LOS path(liq)
  • MWR column precipitable water vapor(vap)

sgpmwrlosB6.b1:
  • MWR column precipitable water vapor(vap)
  • Averaged total liquid water along LOS path(liq)

sgpqmemwrcolB6.c1:
  • Ensemble average for MWR liquid in window centered about balloon release(mean_liq_mwr)
  • Ensemble average for MWR vapor in window centered about balloon release(mean_vap_mwr)

sgpmwrlosB6.a1:
  • Averaged total liquid water along LOS path(liq)
  • MWR column precipitable water vapor(vap)


Back To Table of Contents

DQRID : D050927.3
Start DateStart TimeEnd DateEnd Time
07/09/2002170009/13/20052121
Subject:
SGP/MWR/B4 - New software version (4.15) installed
DataStreams:sgpmwrlosB4.b1, sgpmwrtipB4.a1
Description:
A problem began with the installation of MWR.EXE version 4.12 in July 2002. The software 
had been upgraded from a "DOS" to a "Windows"-compiled program to address an earlier 
problem.  The software upgrade corrected the earlier problem but introduced a new one that 
caused line-of-sight observing cycles to be skipped, a 15% reduction in the number of tip 
curves, and saturation of CPU usage. Software versions 4.13 and 4.14 also produced these 
problems.

The new MWR software, version 4.15, was installed on 9/13/2005. As a consequence of this 
upgrade, the tip curve frequency increased. The tip cycle time decreased from ~60s to ~50s.
Measurements:sgpmwrlosB4.b1:
  • Averaged total liquid water along LOS path(liq)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • Sky Infra-Red Temperature(sky_ir_temp)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • 31.4 GHz blackbody(bb31)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Ambient temperature(tkair)
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • (tknd)
  • Blackbody kinetic temperature(tkbb)
  • 23.8 GHz sky signal(sky23)
  • Sky brightness temperature at 23.8 GHz(tbsky23)
  • MWR column precipitable water vapor(vap)
  • IR Brightness Temperature(ir_temp)
  • 31.4 GHz sky signal(sky31)
  • Sky brightness temperature at 31.4 GHz(tbsky31)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • 23.8 GHz Blackbody signal(bb23)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • Mixer kinetic (physical) temperature(tkxc)

sgpmwrtipB4.a1:
  • 23.8 GHz sky brightness temperature derived from tip curve(tbskytip23)
  • Mixer kinetic (physical) temperature(tkxc)
  • 23.8 GHz Blackbody signal(bb23)
  • (tknd)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • 31.4 GHz blackbody(bb31)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • Blackbody kinetic temperature(tkbb)
  • 23.8 GHz sky signal(tipsky23)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • Ambient temperature(tkair)
  • 31.4 GHz goodness-of-fit coefficient(r31)
  • 31.4 GHz sky signal(tipsky31)
  • 23.8 GHz goodness-of-fit coefficient(r23)
  • Noise injection temp at 23.8 GHz derived from this tip(tnd23I)
  • Noise injection temp at 31.4 GHz derived from this tip(tnd31I)
  • 31.8 GHz sky brightness temperature derived from tip curve(tbskytip31)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)


Back To Table of Contents

DQRID : D050927.4
Start DateStart TimeEnd DateEnd Time
07/10/2002170009/13/20052124
Subject:
SGP/MWR/B5 - New software version (4.15) installed
DataStreams:sgpmwrlosB5.b1, sgpmwrtipB5.a1
Description:
A problem began with the installation of MWR.EXE version 4.12 in July 2002. The software 
had been upgraded from a "DOS" to a "Windows"-compiled program to address an earlier 
problem.  The software upgrade corrected the earlier problem but introduced a new one that 
caused line-of-sight observing cycles to be skipped, a 15% reduction in the number of tip 
curves, and saturation of CPU usage. Software versions 4.13 and 4.14 also produced these 
problems.

The new MWR software, version 4.15, was installed on 9/13/2005. As a consequence of this 
upgrade, the tip curve frequency increased. The tip cycle time decreased from ~60s to ~50s.
Measurements:sgpmwrtipB5.a1:
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • 31.4 GHz sky signal(tipsky31)
  • Blackbody kinetic temperature(tkbb)
  • (tknd)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • 31.8 GHz sky brightness temperature derived from tip curve(tbskytip31)
  • 31.4 GHz goodness-of-fit coefficient(r31)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • Noise injection temp at 31.4 GHz derived from this tip(tnd31I)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • 23.8 GHz Blackbody signal(bb23)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • 31.4 GHz blackbody(bb31)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • Mixer kinetic (physical) temperature(tkxc)
  • Noise injection temp at 23.8 GHz derived from this tip(tnd23I)
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • Ambient temperature(tkair)
  • 23.8 GHz sky brightness temperature derived from tip curve(tbskytip23)
  • 23.8 GHz sky signal(tipsky23)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)
  • 23.8 GHz goodness-of-fit coefficient(r23)
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)

sgpmwrlosB5.b1:
  • Mixer kinetic (physical) temperature(tkxc)
  • Ambient temperature(tkair)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • 23.8 GHz sky signal(sky23)
  • Blackbody kinetic temperature(tkbb)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • 31.4 GHz blackbody(bb31)
  • MWR column precipitable water vapor(vap)
  • (tknd)
  • IR Brightness Temperature(ir_temp)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • Sky brightness temperature at 31.4 GHz(tbsky31)
  • Averaged total liquid water along LOS path(liq)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • 31.4 GHz sky signal(sky31)
  • Sky brightness temperature at 23.8 GHz(tbsky23)
  • Sky Infra-Red Temperature(sky_ir_temp)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • 23.8 GHz Blackbody signal(bb23)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)


Back To Table of Contents

DQRID : D050928.6
Start DateStart TimeEnd DateEnd Time
07/09/2002210009/23/20052246
Subject:
SGP/MWR/B6 - New software version (4.15) installed
DataStreams:sgpmwrlosB6.b1, sgpmwrtipB6.a1
Description:
A problem began with the installation of MWR.EXE version 4.12 in July 2002. The software 
had been upgraded from a "DOS" to a "Windows"-compiled program to address an earlier 
problem.  The software upgrade corrected the earlier problem but introduced a new one that 
caused line-of-sight observing cycles to be skipped, a 15% reduction in the number of tip 
curves, and saturation of CPU usage. Software versions 4.13 and 4.14 also produced these 
problems.

The new MWR software, version 4.15, was installed on 9/23/2005. As a consequence of this 
upgrade, the tip curve frequency increased. The tip cycle time decreased from ~60s to ~50s.
Measurements:sgpmwrtipB6.a1:
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Ambient temperature(tkair)
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)
  • 23.8 GHz sky brightness temperature derived from tip curve(tbskytip23)
  • 31.4 GHz goodness-of-fit coefficient(r31)
  • 31.4 GHz sky signal(tipsky31)
  • 23.8 GHz goodness-of-fit coefficient(r23)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • (tknd)
  • 31.8 GHz sky brightness temperature derived from tip curve(tbskytip31)
  • Noise injection temp at 31.4 GHz derived from this tip(tnd31I)
  • 23.8 GHz sky signal(tipsky23)
  • Noise injection temp at 23.8 GHz derived from this tip(tnd23I)
  • 23.8 GHz Blackbody signal(bb23)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • 31.4 GHz blackbody(bb31)
  • Blackbody kinetic temperature(tkbb)
  • Mixer kinetic (physical) temperature(tkxc)
  • Temperature correction coefficient at 31.4 GHz(tc31)

sgpmwrlosB6.b1:
  • IR Brightness Temperature(ir_temp)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • 23.8 GHz sky signal(sky23)
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • Averaged total liquid water along LOS path(liq)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • Sky brightness temperature at 31.4 GHz(tbsky31)
  • 23.8 GHz Blackbody signal(bb23)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • MWR column precipitable water vapor(vap)
  • Mixer kinetic (physical) temperature(tkxc)
  • Sky brightness temperature at 23.8 GHz(tbsky23)
  • Sky Infra-Red Temperature(sky_ir_temp)
  • 31.4 GHz blackbody(bb31)
  • Ambient temperature(tkair)
  • Blackbody kinetic temperature(tkbb)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • (tknd)
  • 31.4 GHz sky signal(sky31)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)


Back To Table of Contents

DQRID : D080701.2
Start DateStart TimeEnd DateEnd Time
07/24/1999200007/26/19991651
07/30/1999210008/01/19991452
06/01/2000183906/05/20001800
07/03/2000223907/05/20001651
08/05/2000173608/07/20001857
08/09/2000130009/19/20001808
09/23/2000043609/25/20001257
12/31/2000164501/02/20011700
07/13/2001155007/16/20011515
01/31/2002004702/05/20021657
06/28/2002102307/09/20021650
12/14/2002070012/20/20021719
03/04/2003173503/07/20031708
06/06/2003004606/09/20031703
09/23/2003194809/25/20031842
10/09/2003222410/14/20031741
12/15/2003113012/18/20031716
05/23/2004200305/25/20041729
12/24/2004071812/27/20041435
06/18/2005152106/20/20051304
09/30/2005040510/03/20051359
10/07/2005231310/11/20051400
10/12/2005004110/14/20051318
10/14/2005134410/28/20051537
10/28/2005235610/31/20051756
11/05/2005021411/07/20051529
11/17/2005151706/11/20071855
05/27/2008042906/03/20081714
10/03/2008052010/06/20081205
10/31/2008141311/03/20081318
Subject:
SGP/MWR/B4 - Missing data
DataStreams:sgpmwrlosB4.b1, sgpmwrtipB4.a1
Description:
Data are missing and unrecoverable.
Measurements:sgpmwrlosB4.b1:
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • Dummy altitude for Zeb(alt)
  • Time offset of tweaks from base_time(time_offset)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • lon(lon)
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • Blackbody kinetic temperature(tkbb)
  • MWR column precipitable water vapor(vap)
  • Sky brightness temperature at 23.8 GHz(tbsky23)
  • 31.4 GHz sky signal(sky31)
  • IR Brightness Temperature(ir_temp)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • 23.8 GHz Blackbody signal(bb23)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • Mixer kinetic (physical) temperature(tkxc)
  • lat(lat)
  • Averaged total liquid water along LOS path(liq)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • Sky Infra-Red Temperature(sky_ir_temp)
  • 31.4 GHz blackbody(bb31)
  • Ambient temperature(tkair)
  • (tknd)
  • 23.8 GHz sky signal(sky23)
  • Sky brightness temperature at 31.4 GHz(tbsky31)
  • base time(base_time)
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)

sgpmwrtipB4.a1:
  • Mixer kinetic (physical) temperature(tkxc)
  • (tknd)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)
  • Blackbody kinetic temperature(tkbb)
  • Actual Azimuth(actaz)
  • 23.8 GHz sky signal(tipsky23)
  • 31.4 GHz goodness-of-fit coefficient(r31)
  • 31.4 GHz sky signal(tipsky31)
  • 23.8 GHz goodness-of-fit coefficient(r23)
  • Noise injection temp at 23.8 GHz derived from this tip(tnd23I)
  • 23.8 GHz sky brightness temperature derived from tip curve(tbskytip23)
  • lat(lat)
  • 23.8 GHz Blackbody signal(bb23)
  • Dummy altitude for Zeb(alt)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • Actual elevation angle(actel)
  • Time offset of tweaks from base_time(time_offset)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)
  • 31.4 GHz blackbody(bb31)
  • base time(base_time)
  • lon(lon)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • Total water vapor along zenith path using tip-derived brightness temperatures(vaptip)
  • Ambient temperature(tkair)
  • Noise injection temp at 31.4 GHz derived from this tip(tnd31I)
  • 31.8 GHz sky brightness temperature derived from tip curve(tbskytip31)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • Total liquid water along zenith path using tip-derived brightness temperatures(liqtip)


Back To Table of Contents

DQRID : D080724.1
Start DateStart TimeEnd DateEnd Time
03/28/1998195904/08/19981626
07/07/1998195907/15/19981823
07/18/1998190007/29/19981944
09/04/1998185909/09/19981848
12/15/1998215312/17/19981926
01/17/1999054901/19/19991829
06/23/1999142906/25/19991945
07/23/1999190007/27/19991537
07/27/1999175907/29/19992153
07/30/1999190008/01/19991453
09/11/1999061609/13/19991456
09/13/1999170009/15/19992130
09/17/1999130310/27/19991716
02/18/2000170002/21/20001522
09/01/2000200009/05/20001636
12/26/2000234301/02/20011713
01/12/2001190001/15/20011542
11/10/2001195711/12/20011629
01/27/2003141301/31/20031734
03/03/2003113003/05/20031904
06/14/2003222906/19/20031548
08/18/2003113108/20/20031700
10/08/2003070310/10/20031545
10/10/2003162410/15/20031622
10/15/2003170010/17/20031618
12/24/2003234112/26/20031741
02/16/2004113102/18/20041844
03/31/2004191705/07/20041703
09/13/2004113009/15/20041559
11/13/2004203211/15/20041757
11/24/2004183411/26/20041729
12/04/2004134412/06/20041846
12/25/2004182512/27/20041434
07/09/2005111407/11/20051313
10/24/2005104310/26/20051623
11/01/2005091111/09/20051946
11/10/2005035611/23/20051440
11/29/2005092412/06/20051749
12/06/2005210012/09/20051736
12/09/2005233312/12/20051429
08/21/2006180006/11/20071953
09/02/2007145109/07/20071540
09/14/2007154609/17/20071811
09/18/2007052509/26/20071320
10/05/2007033110/09/20071549
11/03/2007234511/05/20071620
11/10/2007000911/13/20071725
11/17/2007234511/19/20071411
11/21/2007190012/06/20072100
12/06/2007212012/13/20071836
01/19/2008102401/23/20081438
04/15/2008130404/17/20081312
04/19/2008011604/21/20081310
05/31/2008180906/04/20081915
10/03/2008084210/06/20081209
12/12/2008184712/15/20081441
Subject:
SGP/MWR/B5 - Missing data
DataStreams:sgpmwrlosB5.b1
Description:
Data are missing and unrecoverable.
Measurements:sgpmwrlosB5.b1:
  • base time(base_time)
  • Mixer kinetic (physical) temperature(tkxc)
  • Ambient temperature(tkair)
  • Temperature correction coefficient at 31.4 GHz(tc31)
  • Time offset of tweaks from base_time(time_offset)
  • 23.8 GHz sky signal(sky23)
  • Blackbody kinetic temperature(tkbb)
  • 31.4 GHz blackbody(bb31)
  • MWR column precipitable water vapor(vap)
  • Noise injection temp at 31.4 GHz adjusted to tkbb(tnd31)
  • (tknd)
  • IR Brightness Temperature(ir_temp)
  • Water on Teflon window (1=WET, 0=DRY)(wet_window)
  • Noise injection temp at 23.8 GHz adjusted to tkbb(tnd23)
  • 31.4 GHz blac2body+noise injection signal(bbn31)
  • Sky brightness temperature at 31.4 GHz(tbsky31)
  • Averaged total liquid water along LOS path(liq)
  • 23.8 GHz blackbody+noise injection signal(bbn23)
  • lat(lat)
  • lon(lon)
  • 31.4 GHz sky signal(sky31)
  • Sky brightness temperature at 23.8 GHz(tbsky23)
  • Sky Infra-Red Temperature(sky_ir_temp)
  • Noise injection temp at nominal temperature at 23.8 GHz(tnd_nom23)
  • 23.8 GHz Blackbody signal(bb23)
  • Dummy altitude for Zeb(alt)
  • Temperature correction coefficient at 23.8 GHz(tc23)
  • Noise injection temp at nominal temperature at 31.4 GHz(tnd_nom31)


Back To Table of Contents



END OF DATA