Data Quality Reports for Session: 117206 User: sntnello Completed: 01/27/2009


TABLE OF CONTENTS

DQR IDSubjectData Streams Affected
D021113.1SGP/EBBR - Incorrect Units for Soil Heat Capacity (cs1, cs2, cs3, cs4, cs5) in 30EBBR
Header
sgp30ebbrE12.b1, sgp30ebbrE13.b1, sgp30ebbrE15.b1, sgp30ebbrE18.b1, sgp30ebbrE19.b1,
sgp30ebbrE2.b1, sgp30ebbrE20.b1, sgp30ebbrE22.b1, sgp30ebbrE26.b1, sgp30ebbrE4.b1,
sgp30ebbrE7.b1, sgp30ebbrE8.b1, sgp30ebbrE9.b1
D030115.10SGP/EBBR/E18 - Reprocess: Soil Heat Flow #1 Highsgp30ebbrE18.a1, sgp30ebbrE18.b1
D030115.2SGP/EBBR/E12 - REPROCESS: Net Rad Calibration Coefficientssgp30ebbrE12.a1, sgp30ebbrE12.b1, sgp5ebbrE12.a1
D030116.11SGP/EBBR/E19 - Water in Net Radiometer Domesgp30ebbrE19.a1, sgp30ebbrE19.b1, sgp5ebbrE19.a1
D030117.11SGP/EBBR/E20 - REPROCESS: Soil Temperature #2 Incorrectsgp30ebbrE20.a1, sgp30ebbrE20.b1
D030117.28SGP/EBBR/E26 - Water in broken Net Radiometer Domesgp30ebbrE26.a1, sgp30ebbrE26.b1, sgp5ebbrE26.a1
D030117.4SGP/EBBR/E19 - Soil Temperatures #2 and #3 Intermittently Badsgp30ebbrE19.a1, sgp30ebbrE19.b1
D030117.8SGP/EBBR/E20 - REPROCESS: Net Rad Coefficients Incorrectsgp30ebbrE20.a1, sgp30ebbrE20.b1, sgp5ebbrE20.a1
D030724.2SGP/EBBR/E15 - Wind Direction 10 Degrees Lowsgp15ebbrE15.a1, sgp15ebbrE15.b1, sgp30ebbrE15.a1, sgp30ebbrE15.b1, sgp5ebbrE15.a1
D040525.4SGP/EBBR/E19 - Metadata errors sgp15ebbrE19.b1, sgp30ebbrE19.b1, sgp5ebbrE19.a1
D041004.4SGP/EBBR/E15 - Soil Moisture Coefficients Incorrectsgp30ebbrE15.b1
D050624.7SGP/EBBR/E13 - Improved EBBR CR10 Programsgp30ebbrE13.b1
D050719.10SGP/EBBR/E15 - Improved EBBR CR10 Programsgp30ebbrE15.b1
D050719.11SGP/EBBR/E18 - Improved EBBR CR10 Programsgp30ebbrE18.b1
D050719.12SGP/EBBR/E19 - Improved EBBR CR10 Programsgp30ebbrE19.b1
D050719.13SGP/EBBR/E20 - Improved EBBR CR10 Programsgp30ebbrE20.b1
D050719.14SGP/EBBR/E22 - Improved EBBR CR10 Programsgp30ebbrE22.b1
D050719.15SGP/EBBR/E26 - Improved EBBR CR10 Programsgp30ebbrE26.b1
D050719.4SGP/EBBR/E2 - Improved EBBR CR10 Programsgp30ebbrE2.b1
D050719.5SGP/EBBR/E4 - Improved EBBR CR10 Programsgp30ebbrE4.b1
D050719.6SGP/EBBR/E7 - Improved EBBR CR10 Programsgp30ebbrE7.b1
D050719.7SGP/EBBR/E8 - Improved EBBR CR10 Programsgp30ebbrE8.b1
D050719.8SGP/EBBR/E9 - Improved EBBR CR10 Programsgp30ebbrE9.b1
D050719.9SGP/EBBR/E12 - Improved EBBR CR10 Programsgp30ebbrE12.b1


DQRID : D021113.1
Start DateStart TimeEnd DateEnd Time
04/01/2001000006/18/20032359
Subject:
SGP/EBBR - Incorrect Units for Soil Heat Capacity (cs1, cs2, cs3, cs4, cs5) in 30EBBR 
Header
DataStreams:sgp30ebbrE12.b1, sgp30ebbrE13.b1, sgp30ebbrE15.b1, sgp30ebbrE18.b1, sgp30ebbrE19.b1,
sgp30ebbrE2.b1, sgp30ebbrE20.b1, sgp30ebbrE22.b1, sgp30ebbrE26.b1, sgp30ebbrE4.b1,
sgp30ebbrE7.b1, sgp30ebbrE8.b1, sgp30ebbrE9.b1
Description:
The units for Soil Heat Capacity (cs1, cs2, cs3, cs4, cs5) in the 
EBBR 30 minute netcdf header have been incorrect from the beginning 
of processing the data into netcdf files.  The correct units are 
MJ/m^3/C.

This does not affect the data quality.
Measurements:sgp30ebbrE8.b1:
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 1(cs1)

sgp30ebbrE4.b1:
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 1(cs1)

sgp30ebbrE9.b1:
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 1(cs1)

sgp30ebbrE18.b1:
  • Soil heat capacity 1(cs1)
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 5(cs5)

sgp30ebbrE26.b1:
  • Soil heat capacity 1(cs1)
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 3(cs3)

sgp30ebbrE13.b1:
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 1(cs1)
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 5(cs5)

sgp30ebbrE7.b1:
  • Soil heat capacity 1(cs1)
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 3(cs3)

sgp30ebbrE12.b1:
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 1(cs1)
  • Soil heat capacity 3(cs3)

sgp30ebbrE19.b1:
  • Soil heat capacity 1(cs1)
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 4(cs4)

sgp30ebbrE2.b1:
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 1(cs1)
  • Soil heat capacity 5(cs5)

sgp30ebbrE22.b1:
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 1(cs1)
  • Soil heat capacity 2(cs2)

sgp30ebbrE20.b1:
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 1(cs1)
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 2(cs2)

sgp30ebbrE15.b1:
  • Soil heat capacity 5(cs5)
  • Soil heat capacity 3(cs3)
  • Soil heat capacity 4(cs4)
  • Soil heat capacity 2(cs2)
  • Soil heat capacity 1(cs1)


Back To Table of Contents

DQRID : D030115.10
Start DateStart TimeEnd DateEnd Time
07/08/2002180007/19/20021430
08/20/2002210008/26/20020300
09/01/2002210011/12/20022130
Subject:
SGP/EBBR/E18 - Reprocess: Soil Heat Flow #1 High
DataStreams:sgp30ebbrE18.a1, sgp30ebbrE18.b1
Description:
Soil Heat Flow #1 measurements were 2X to offscale high
during these periods.

See below for a work-around.
Measurements:sgp30ebbrE18.b1:
  • latent heat flux(e)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • 5 cm soil heat flow, site 1(shf1)
  • soil heat flow, site 1(g1)
  • h(h)
  • average surface soil heat flow(ave_shf)

sgp30ebbrE18.a1:
  • soil heat flow, site 1(g1)
  • h(h)
  • average surface soil heat flow(ave_shf)
  • 5 cm soil heat flow corrected for soil moisture content, site 1(c_shf1)
  • latent heat flux(e)
  • 5 cm soil heat flow, site 1(shf1)


Back To Table of Contents

DQRID : D030115.2
Start DateStart TimeEnd DateEnd Time
08/16/2002172012/10/20021720
Subject:
SGP/EBBR/E12 - REPROCESS: Net Rad Calibration Coefficients
DataStreams:sgp30ebbrE12.a1, sgp30ebbrE12.b1, sgp5ebbrE12.a1
Description:
The Net Radiometer coefficients were incorrect in the CR10
program when the replacement EBBR unit was installed on
08/16/02.

The data can be easily corrected; see the Suggestion area below.
Measurements:sgp30ebbrE12.a1:
  • net radiation(q)
  • latent heat flux(e)
  • h(h)

sgp5ebbrE12.a1:
  • net radiation(q)

sgp30ebbrE12.b1:
  • latent heat flux(e)
  • net radiation(q)
  • h(h)


Back To Table of Contents

DQRID : D030116.11
Start DateStart TimeEnd DateEnd Time
08/25/2002210009/05/20021430
Subject:
SGP/EBBR/E19 - Water in Net Radiometer Dome
DataStreams:sgp30ebbrE19.a1, sgp30ebbrE19.b1, sgp5ebbrE19.a1
Description:
The net radiation measurement is incorrect. Measurements 
calculated using net radiation are also incorrect.  

No work-around is possible for this situation.
Measurements:sgp5ebbrE19.a1:
  • net radiation(q)

sgp30ebbrE19.a1:
  • latent heat flux(e)
  • h(h)
  • net radiation(q)

sgp30ebbrE19.b1:
  • h(h)
  • latent heat flux(e)
  • net radiation(q)


Back To Table of Contents

DQRID : D030117.11
Start DateStart TimeEnd DateEnd Time
08/09/2002170509/18/20021700
Subject:
SGP/EBBR/E20 - REPROCESS: Soil Temperature #2 Incorrect
DataStreams:sgp30ebbrE20.a1, sgp30ebbrE20.b1
Description:
Soil Temperature #2 was incorrect, apparently
from am loose wire after replacement of the EBBR unit.
The indicated measurements that are calculated using 
soil temperature are also incorrect.

See the work-around below.
Measurements:sgp30ebbrE20.b1:
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • soil heat flow, site 2(g2)
  • average surface soil heat flow(ave_shf)
  • latent heat flux(e)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • h(h)

sgp30ebbrE20.a1:
  • latent heat flux(e)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • soil heat flow, site 2(g2)
  • h(h)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • average surface soil heat flow(ave_shf)


Back To Table of Contents

DQRID : D030117.28
Start DateStart TimeEnd DateEnd Time
08/27/2002083009/05/20021700
Subject:
SGP/EBBR/E26 - Water in broken Net Radiometer Dome
DataStreams:sgp30ebbrE26.a1, sgp30ebbrE26.b1, sgp5ebbrE26.a1
Description:
The net radiation measurement is incorrect. Measurements 
calculated using net radiation are also incorrect.  

No work-around is possible for this situation.
Measurements:sgp5ebbrE26.a1:
  • net radiation(q)

sgp30ebbrE26.b1:
  • latent heat flux(e)
  • net radiation(q)
  • h(h)

sgp30ebbrE26.a1:
  • h(h)
  • net radiation(q)
  • latent heat flux(e)


Back To Table of Contents

DQRID : D030117.4
Start DateStart TimeEnd DateEnd Time
07/14/2002143001/09/20031600
Subject:
SGP/EBBR/E19 - Soil Temperatures #2 and #3 Intermittently Bad
DataStreams:sgp30ebbrE19.a1, sgp30ebbrE19.b1
Description:
Soil Temperatures #2 and #3 were intermittently incorrect.
#3 appeared to be okay after the J-panel was replaced. 
#2 continues to be flaky, suggesting that the sensor
itself has a problem.  A DQPR has been submitted to
replace #2.  The indicated measurements 
that are calculated using soil temperature are 
also suspect.  However, the intermittent problems normally
occurred during night times and were fairly small in magnitude,
thereby having little effect on the sensible and latent heat fluxes.
Measurements:sgp30ebbrE19.a1:
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • 0-5 cm integrated soil temperature, site 3(ts3)
  • average surface soil heat flow(ave_shf)
  • soil heat flow, site 3(g3)
  • soil heat flow, site 2(g2)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • latent heat flux(e)
  • h(h)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)

sgp30ebbrE19.b1:
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • h(h)
  • soil heat flow, site 2(g2)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • 0-5 cm integrated soil temperature, site 3(ts3)
  • soil heat flow, site 3(g3)
  • average surface soil heat flow(ave_shf)
  • 0-5 cm integrated soil temperature, site 2(ts2)
  • latent heat flux(e)


Back To Table of Contents

DQRID : D030117.8
Start DateStart TimeEnd DateEnd Time
08/09/2002173012/11/20021930
Subject:
SGP/EBBR/E20 - REPROCESS: Net Rad Coefficients Incorrect
DataStreams:sgp30ebbrE20.a1, sgp30ebbrE20.b1, sgp5ebbrE20.a1
Description:
The Net Radiometer coefficients were incorrect in the CR10
program when the replacement EBBR unit was installed on
08/09/02.

The data can be easily corrected; see the Suggestion area below.
Measurements:sgp30ebbrE20.b1:
  • latent heat flux(e)
  • net radiation(q)
  • h(h)

sgp5ebbrE20.a1:
  • net radiation(q)

sgp30ebbrE20.a1:
  • net radiation(q)
  • latent heat flux(e)
  • h(h)


Back To Table of Contents

DQRID : D030724.2
Start DateStart TimeEnd DateEnd Time
10/11/2001193008/05/20031630
Subject:
SGP/EBBR/E15 - Wind Direction 10 Degrees Low
DataStreams:sgp15ebbrE15.a1, sgp15ebbrE15.b1, sgp30ebbrE15.a1, sgp30ebbrE15.b1, sgp5ebbrE15.a1
Description:
The wind direction at E15 EBBR was 10 degrees low for the period (since
installation of the EBBR unit on 10/11/01). The wind direction sensor was apparently 
aligned to magnetic north instead of true north at installation.
Measurements:sgp15ebbrE15.b1:
  • Wind direction (relative to true north)(mv_wind_d)

sgp30ebbrE15.b1:
  • wind direction (relative to true north)(wind_d)

sgp5ebbrE15.a1:
  • wind direction (relative to true north)(wind_d)

sgp30ebbrE15.a1:
  • wind direction (relative to true north)(wind_d)

sgp15ebbrE15.a1:
  • Wind direction (relative to true north)(mv_wind_d)


Back To Table of Contents

DQRID : D040525.4
Start DateStart TimeEnd DateEnd Time
04/01/2001000005/06/20032359
Subject:
SGP/EBBR/E19 - Metadata errors
DataStreams:sgp15ebbrE19.b1, sgp30ebbrE19.b1, sgp5ebbrE19.a1
Description:
The latitude, longitude and altitude of the El Reno (E19) site were
incorrectly entered into the ARM database.  The correct location
of the EBBR.E19 instrument is:
    Lat: 35.557N
    Lon: 98.017W
    Alt:    421m
Measurements:sgp15ebbrE19.b1:
  • lat(lat)
  • Dummy altitude for Zeb(alt)
  • lon(lon)

sgp5ebbrE19.a1:
  • Dummy altitude for Zeb(alt)
  • lat(lat)
  • lon(lon)

sgp30ebbrE19.b1:
  • Dummy altitude for Zeb(alt)
  • lon(lon)
  • lat(lat)


Back To Table of Contents

DQRID : D041004.4
Start DateStart TimeEnd DateEnd Time
10/11/2001150009/28/20041509
Subject:
SGP/EBBR/E15 - Soil Moisture Coefficients Incorrect
DataStreams:sgp30ebbrE15.b1
Description:
The soil Moisture coefficients used for E15 were incorrect from the time of
installation of the system in program version 8.  On 9 July 02 parameter 4  (an offset 
value) of program step 136 was changed from 9.5264 to the correct value 0.95264 (this error 
had been made by the vendor). The error masked the real problem (wrong soil type) and 
after 9 July 02 resulted in very low soil moisture measurements.  The coefficients used were 
for coarse sand.  On 28 Sep 04 I visited the E15 site and found the soil type a fine 
sandy clay or fine sandy loam.  I changed the coefficients  at 1509 GMT to those for a very 
fine sandy loam; this produced reasonable soil moistures for the soil type.

The old coefficients in parameters 4 through 9 for step 136 of the program were: 0.95264, 
-6.7859, 36.224, -58.619, 25.073, 4.2278

The new coefficients are: 10.241, -27.943, 49.523, -12.648, -52.643, 38.054
Measurements:sgp30ebbrE15.b1:
  • volumetric soil moisture, site 3(sm3)
  • soil heat flow, site 3(g3)
  • 0-5 cm change in soil heat storage with time, site 3(ces3)
  • 0-5 cm change in soil heat storage with time, site 4(ces4)
  • volumetric soil moisture, site 2(sm2)
  • soil heat flow, site 2(g2)
  • latent heat flux(e)
  • volumetric soil moisture, site 1(sm1)
  • 0-5 cm change in soil heat storage with time, site 5(ces5)
  • soil heat flow, site 1(g1)
  • 0-5 cm change in soil heat storage with time, site 2(ces1)
  • soil heat flow, site 5(g5)
  • average surface soil heat flow(ave_shf)
  • volumetric soil moisture, site 4(sm4)
  • 0-5 cm change in soil heat storage with time, site 2(ces2)
  • h(h)
  • soil heat flow, site 4(g4)
  • volumetric soil moisture, site 5(sm5)


Back To Table of Contents

DQRID : D050624.7
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/31/20052100
Subject:
SGP/EBBR/E13 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE13.b1
Description:
Effective 20050331.2100, the EBBR.E13 CR10 program was revised to improve the quality of 
the primary measurements as follows:

1) An RMS procedure is used to determine max and min limits of acceptable soil heat flow.  
This is applied to the individual soil sets.  Measurements outside the limits are 
rejected and the measurements within the limits are used to calculate the average soil heat flow.

2) Max and min limits are used to determine incorrect values of net radiation, sensible 
heat flux (h), latent heat flux (e), and automatic exchange mechanism (AEM) signal.  If AEM 
signal is outside the limits, h and e are set to 999s.  If net radiation is outside the 
limits, h and e are set to 999s. If h or e are outside the limits, h and e are set to 999s.

Virtually no incorrect soil measurement will affect the primary measurements of h and e.

By setting h and e to 999s, it can be easily seen that the primary variables are 
incorrect; no other interpretation is possible.

Prior to 20050331, the improved CR10 program was NOT in effect.  DQRs have been submitted 
for known instances of incorrect soil measurements which affected the quality of the 
primary measurements of h and e.

Note: the DQR begin date is the begin date of the sgp30ebbrE13.b1 data stream.  The 
earlier version of the CR10 program was also used on previous EBBR datastream names (e.g. 
sgp30ebbrE13.a1).
Measurements:sgp30ebbrE13.b1:
  • average surface soil heat flow(ave_shf)
  • latent heat flux(e)
  • h(h)


Back To Table of Contents

DQRID : D050719.10
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/29/20051900
Subject:
SGP/EBBR/E15 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE15.b1
Description:
Effective 20050329.1900, the EBBR.E15 CR10 program was revised to improve 
the quality of the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h 
and e are set to 999s.  If net radiation is outside the limits, h and e are 
set to 999s. If h or e are outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary 
measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary 
variables are incorrect; no other interpretation is possible.
   
Prior to 20050329, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE15.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE15.a1).
Measurements:sgp30ebbrE15.b1:
  • latent heat flux(e)
  • average surface soil heat flow(ave_shf)
  • h(h)


Back To Table of Contents

DQRID : D050719.11
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/30/20050000
Subject:
SGP/EBBR/E18 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE18.b1
Description:
Effective 20050330.0000, the EBBR.E18 CR10 program was revised to improve 
the quality of the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h 
and e are set to 999s.  If net radiation is outside the limits, h and e are 
set to 999s. If h or e are outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary 
measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary 
variables are incorrect; no other interpretation is possible.
   
Prior to 20050330, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE18.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE18.a1).
Measurements:sgp30ebbrE18.b1:
  • latent heat flux(e)
  • h(h)
  • average surface soil heat flow(ave_shf)


Back To Table of Contents

DQRID : D050719.12
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/31/20051600
Subject:
SGP/EBBR/E19 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE19.b1
Description:
Effective 20050331.1600, the EBBR.E19 CR10 program was revised to improve 
the quality of the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h 
and e are set to 999s.  If net radiation is outside the limits, h and e are 
set to 999s. If h or e are outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary 
measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary 
variables are incorrect; no other interpretation is possible.
   
Prior to 20050331, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE19.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE19.a1).
Measurements:sgp30ebbrE19.b1:
  • average surface soil heat flow(ave_shf)
  • h(h)
  • latent heat flux(e)


Back To Table of Contents

DQRID : D050719.13
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/30/20051900
Subject:
SGP/EBBR/E20 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE20.b1
Description:
Effective 20050330.1900, the EBBR.E20 CR10 program was revised to improve 
the quality of the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h 
and e are set to 999s.  If net radiation is outside the limits, h and e are 
set to 999s. If h or e are outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary 
measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary 
variables are incorrect; no other interpretation is possible.
   
Prior to 20050330, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE20.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE20.a1).
Measurements:sgp30ebbrE20.b1:
  • average surface soil heat flow(ave_shf)
  • latent heat flux(e)
  • h(h)


Back To Table of Contents

DQRID : D050719.14
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/30/20051930
Subject:
SGP/EBBR/E22 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE22.b1
Description:
Effective 20050330.1930, the EBBR.E20 CR10 program was revised to improve 
the quality of the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h 
and e are set to 999s.  If net radiation is outside the limits, h and e are 
set to 999s. If h or e are outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary 
measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary 
variables are incorrect; no other interpretation is possible.
   
Prior to 20050330, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE20.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE20.a1).
Measurements:sgp30ebbrE22.b1:
  • h(h)
  • average surface soil heat flow(ave_shf)
  • latent heat flux(e)


Back To Table of Contents

DQRID : D050719.15
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/31/20051700
Subject:
SGP/EBBR/E26 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE26.b1
Description:
Effective 20050331.1700, the EBBR.E26 CR10 program was revised to improve 
the quality of the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h 
and e are set to 999s.  If net radiation is outside the limits, h and e are 
set to 999s. If h or e are outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary 
measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary 
variables are incorrect; no other interpretation is possible.
   
Prior to 20050331, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE26.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE26.a1).
~
Measurements:sgp30ebbrE26.b1:
  • latent heat flux(e)
  • h(h)
  • average surface soil heat flow(ave_shf)


Back To Table of Contents

DQRID : D050719.4
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/24/20051700
Subject:
SGP/EBBR/E2 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE2.b1
Description:
Effective 20050324.1700, the EBBR.E2 CR10 program was revised to improve the quality of 
the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h and e are set to 
999s.  If net radiation is outside the limits, h and e are set to 999s. If h or e are 
outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary variables are 
incorrect; no other interpretation is possible.
   
Prior to 20050324, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE2.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE2.a1).
Measurements:sgp30ebbrE2.b1:
  • average surface soil heat flow(ave_shf)
  • h(h)
  • latent heat flux(e)


Back To Table of Contents

DQRID : D050719.5
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/23/20051800
Subject:
SGP/EBBR/E4 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE4.b1
Description:
Effective 20050323.1800, the EBBR.E4 CR10 program was revised to improve the quality of 
the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h and e are set to 
999s.  If net radiation is outside the limits, h and e are set to 999s. If h or e are 
outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary variables are 
incorrect; no other interpretation is possible.
   
Prior to 20050323, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE4.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE4.a1).
Measurements:sgp30ebbrE4.b1:
  • h(h)
  • average surface soil heat flow(ave_shf)
  • latent heat flux(e)


Back To Table of Contents

DQRID : D050719.6
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/22/20051900
Subject:
SGP/EBBR/E7 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE7.b1
Description:
Effective 20050322.1900, the EBBR.E7 CR10 program was revised to improve 
the quality of the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h 
and e are set to 999s.  If net radiation is outside the limits, h and e are 
set to 999s. If h or e are outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary 
measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary 
variables are incorrect; no other interpretation is possible.
   
Prior to 20050322, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE7.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE7.a1).
Measurements:sgp30ebbrE7.b1:
  • average surface soil heat flow(ave_shf)
  • h(h)
  • latent heat flux(e)


Back To Table of Contents

DQRID : D050719.7
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/22/20051730
Subject:
SGP/EBBR/E8 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE8.b1
Description:
Effective 20050322.1730, the EBBR.E8 CR10 program was revised to improve 
the quality of the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h 
and e are set to 999s.  If net radiation is outside the limits, h and e are 
set to 999s. If h or e are outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary 
measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary 
variables are incorrect; no other interpretation is possible.
   
Prior to 20050322, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE8.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE8.a1).
Measurements:sgp30ebbrE8.b1:
  • average surface soil heat flow(ave_shf)
  • latent heat flux(e)
  • h(h)


Back To Table of Contents

DQRID : D050719.8
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/22/20051600
Subject:
SGP/EBBR/E9 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE9.b1
Description:
Effective 20050322.1600, the EBBR.E9 CR10 program was revised to improve 
the quality of the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h 
and e are set to 999s.  If net radiation is outside the limits, h and e are 
set to 999s. If h or e are outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary 
measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary 
variables are incorrect; no other interpretation is possible.
   
Prior to 20050322, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE9.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE9.a1).
Measurements:sgp30ebbrE9.b1:
  • latent heat flux(e)
  • average surface soil heat flow(ave_shf)
  • h(h)


Back To Table of Contents

DQRID : D050719.9
Start DateStart TimeEnd DateEnd Time
04/01/2001000003/29/20051830
Subject:
SGP/EBBR/E12 - Improved EBBR CR10 Program
DataStreams:sgp30ebbrE12.b1
Description:
Effective 20050329.1830, the EBBR.E12 CR10 program was revised to improve 
the quality of the primary measurements as follows:
   
1) An RMS procedure is used to determine max and min limits of acceptable
soil heat flow.  This is applied to the individual soil sets.  Measurements
outside the limits are rejected and the measurements within the limits are
used to calculate the average soil heat flow.
   
2) Max and min limits are used to determine incorrect values of net
radiation, sensible heat flux (h), latent heat flux (e), and automatic
exchange mechanism (AEM) signal.  If AEM signal is outside the limits, h 
and e are set to 999s.  If net radiation is outside the limits, h and e are 
set to 999s. If h or e are outside the limits, h and e are set to 999s.
   
Virtually no incorrect soil measurement will affect the primary 
measurements of h and e.
   
By setting h and e to 999s, it can be easily seen that the primary 
variables are incorrect; no other interpretation is possible.
   
Prior to 20050329, the improved CR10 program was NOT in effect.  DQRs have
been submitted for known instances of incorrect soil measurements which
affected the quality of the primary measurements of h and e.
   
Note: the DQR begin date is the begin date of the sgp30ebbrE12.b1 data
stream.  The earlier version of the CR10 program was also used on previous
EBBR datastream names (e.g. sgp30ebbrE12.a1).
Measurements:sgp30ebbrE12.b1:
  • latent heat flux(e)
  • average surface soil heat flow(ave_shf)
  • h(h)


Back To Table of Contents



END OF DATA